ASSIGNMENT 3 MTH102A

- (1) In \mathbb{R} , consider the addition $x \oplus y = x + y 1$ and the scalar multiplication $\lambda . x = \lambda (x-1) + 1$. Prove that \mathbb{R} is a vector space over \mathbb{R} with respect to these operations. What is the additive identity (the **0** vector in the definition) in this case ?
- (2) Show that $W = \{(x_1, x_2, x_3, x_4) : x_4 x_3 = x_2 x_1\}$ is a subspace of \mathbb{R}^4 spanned by vectors (1, 0, 0, -1), (0, 1, 0, 1), (0, 0, 1, 1).
- (3) Describe all the subspaces of \mathbb{R}^3 .
- (4) Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) | ax + by + cz = d\}$ is a subspace of \mathbb{R}^3 .
- (5) Discuss the linear dependence/independence of following set of vectors:
 (i) {(1,0,0), (1,1,0), (1,1,1)} in R³ as a vector space over R,
 - (ii) {(1,0,0,0), (1,1,0,0), (1,1,1,0), (3,2,1,0)} in \mathbb{R}^4 as a vector space over \mathbb{R} ,
 - (iii) $\{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$, in \mathbb{C}^3 as a vector space over \mathbb{C} ,
 - (iv) $\{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$, in \mathbb{C}^3 as a vector space over \mathbb{R} ,
 - (v) The sets $\{1, sinx, cosx\}$ and $\{2, sin^2x, cos^2x\}$ in the vector space of real valued functions $F = \{f : f : \mathbb{R} \to \mathbb{R}\}.$

(v) $\{u + v, v + w, w + u\}$ in a vector space V given that $\{u, v, w\}$ is linearly independent.

- (6) Let $W_1 = Span\{(1,1,0), (-1,1,0)\}$ and $W_2 = Span\{(1,0,2), (-1,0,4)\}$. Prove that $W_1 + W_2 = \mathbb{R}^3$.
- (7) Find 3 vectors u, v and w in \mathbb{R}^4 such that $\{u, v, w\}$ is linearly dependent whereas $\{u, v\}, \{u, w\}$ and $\{v, w\}$ are linearly independent. Extend each of the linearly independent sets to a basis of \mathbb{R}^4 .
- (8) Let A be a n × n matrix over ℝ. Then A is invertible iff the row vectors are linearly independent over ℝ iff the column vectors are linearly independent over ℝ.
- (9) Determine if the set $T = \{1, x^2 x + 5, 4x^3 x^2 + 5x, 3x + 2\}$ is a basis for the vector space of polynomials in x of degree ≤ 4 . Is this set a basis for the vector space of polynomials in x of degree ≤ 3 ?