ASSIGNMENT 3
 MTH102A

(1) In \mathbb{R}, consider the addition $x \oplus y=x+y-1$ and the scalar multiplication $\lambda . x=\lambda(x-1)+1$. Prove that \mathbb{R} is a vector space over \mathbb{R} with respect to these operations. What is the additive identity (the $\mathbf{0}$ vector in the definition) in this case?
(2) Show that $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{4}-x_{3}=x_{2}-x_{1}\right\}$ is a subspace of \mathbb{R}^{4} spanned by vectors $(1,0,0,-1),(0,1,0,1),(0,0,1,1)$.
(3) Describe all the subspaces of \mathbb{R}^{3}.
(4) Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) \mid a x+$ $b y+c z=d\}$ is a subspace of \mathbb{R}^{3}.
(5) Discuss the linear dependence/independence of following set of vectors:
(i) $\{(1,0,0),(1,1,0),(1,1,1)\}$ in \mathbb{R}^{3} as a vector space over \mathbb{R},
(ii) $\{(1,0,0,0),(1,1,0,0),(1,1,1,0),(3,2,1,0)\}$ in \mathbb{R}^{4} as a vector space over R,
(iii) $\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$, in \mathbb{C}^{3} as a vector space over \mathbb{C},
(iv) $\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$, in \mathbb{C}^{3} as a vector space over \mathbb{R},
(v) The sets $\{1, \sin x, \cos x\}$ and $\left\{2, \sin ^{2} x, \cos ^{2} x\right\}$ in the vector space of real valued functions $F=\{f: f: \mathbb{R} \rightarrow \mathbb{R}\}$.
(v) $\{u+v, v+w, w+u\}$ in a vector space V given that $\{u, v, w\}$ is linearly independent.
(6) Let $W_{1}=\operatorname{Span}\{(1,1,0),(-1,1,0)\}$ and $W_{2}=\operatorname{Span}\{(1,0,2),(-1,0,4)\}$. Prove that $W_{1}+W_{2}=\mathbb{R}^{3}$.
(7) Find 3 vectors u, v and w in \mathbb{R}^{4} such that $\{u, v, w\}$ is linearly dependent whereas $\{u, v\},\{u, w\}$ and $\{v, w\}$ are linearly independent. Extend each of the linearly independent sets to a basis of \mathbb{R}^{4}.
(8) Let A be a $n \times n$ matrix over \mathbb{R}. Then A is invertible iff the row vectors are linearly independent over \mathbb{R} iff the column vectors are linearly independent over \mathbb{R}.
(9) Determine if the set $T=\left\{1, x^{2}-x+5,4 x^{3}-x^{2}+5 x, 3 x+2\right\}$ is a basis for the vector space of polynomials in x of degree ≤ 4. Is this set a basis for the vector space of polynomials in x of degree ≤ 3 ?

