ASSIGNMENT 2

MTH102A

(1) Using Gauss Jordan elimination method find the inverse of $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$.
$\left[\begin{array}{lll|lll}1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-2 R_{1}]{R_{2} \rightarrow R_{2}-2 R_{1}}\left[\begin{array}{ccc|ccc}1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1\end{array}\right] \xrightarrow{R_{3} \rightarrow R_{3}-(2 / 3) R_{2}}$
$\left[\begin{array}{ccc|ccc}1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & 0 & -5 / 3 & -2 / 3 & -2 / 3 & 1\end{array}\right] \xrightarrow{R_{3} \rightarrow(-3 / 5) R_{3}}\left[\begin{array}{ccc|ccc}1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 / 5 & 2 / 5 & -3 / 5\end{array}\right]$
$\xrightarrow[R_{1} \rightarrow R_{1}-2 R_{3}]{R_{2} \rightarrow R_{2}+2 R_{3}}\left[\begin{array}{ccc|ccc}1 & 2 & 0 & 1 / 5 & -4 / 5 & 6 / 5 \\ 0 & -3 & 0 & -6 / 5 & 9 / 5 & -6 / 5 \\ 0 & 0 & 1 & 2 / 5 & 2 / 5 & -3 / 5\end{array}\right] \xrightarrow{R_{2} \rightarrow(-1 / 3) R_{2}}$
$\left[\begin{array}{ccc|ccc}1 & 2 & 0 & 1 / 5 & -4 / 5 & 6 / 5 \\ 0 & 1 & 0 & 2 / 5 & -3 / 5 & 2 / 5 \\ 0 & 0 & 1 & 2 / 5 & 2 / 5 & -3 / 5\end{array}\right] \xrightarrow{R_{1} \rightarrow R_{1}-2 R_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -3 / 5 & 2 / 5 & 2 / 5 \\ 0 & 1 & 0 & 2 / 5 & -3 / 5 & 2 / 5 \\ 0 & 0 & 1 & 2 / 5 & 2 / 5 & -3 / 5\end{array}\right]$
Thus, the inverse is $\left[\begin{array}{ccc}-3 / 5 & 2 / 5 & 2 / 5 \\ 2 / 5 & -3 / 5 & 2 / 5 \\ 2 / 5 & 2 / 5 & -3 / 5\end{array}\right]$.
(2) Let $\sigma \in S_{5}$ be given by

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 1 & 2 & 3
\end{array}\right)
$$

(a) Find sign of σ and sign of σ^{-1},
(b) Find $\sigma^{2}=\sigma \circ \sigma$.

Ans: (a) In the cycle notation the above permutation can be written as $\sigma=$ $(153)(24)=(15)(53)(24)$. There are odd number of transpositions required to express σ. So $\operatorname{sgn}(\sigma)=-1$.
$\sigma^{-1}=(24)(53)(15)$. So $\operatorname{sgn}\left(\sigma^{-1}\right)=-1$.
(b) $\sigma^{2}(1)=3, \sigma^{2}(2)=2, \sigma^{2}(3)=5, \sigma^{2}(4)=4, \sigma^{2}(5)=1$. So $\sigma^{2}=$ $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1\end{array}\right)$.
(3) Using the definition compute the determinant of $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$.

Ans: We have $S_{3}=\{$ identity, (12), (23), (13), (123), (132) \}

Recall that $\operatorname{Sgn}(\sigma)=(-1)^{k}$ where k is the number of transpositions required to express σ.
$\operatorname{Sgn}($ identity $)=1, \operatorname{Sgn}(12)=-1, \operatorname{Sgn}(23)=-1, \operatorname{Sgn}(13)=-1$
$(123)=(12)(23)$. So $\operatorname{Sgn}(123)=1$
$(132)=(13)(23)$. So $\operatorname{Sgn}(132)=1$
For a 3×3 matrix $A=\left(a_{i j}\right)$ we have $\operatorname{det}(A)=\sum_{\sigma \in S_{3}} S g n(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}$
For $\sigma=$ identity we have $a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}=a_{11} a_{22} a_{33}=1$
For $\sigma=(12)$ we have $a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}=a_{12} a_{21} a_{33}=4$
For $\sigma=(13)$ we have $a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}=a_{13} a_{22} a_{31}=4$
For $\sigma=(23)$ we have $a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}=a_{11} a_{23} a_{32}=4$
For $\sigma=(123)$ we have $a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}=a_{12} a_{23} a_{31}=8$
For $\sigma=(132)$ we have $a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}=a_{13} a_{21} a_{32}=8$
So $\operatorname{det}(A)=\sum_{\sigma \in S_{3}} \operatorname{Sgn}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)}=1-4-4-4+8+8=5$
(4) Let A be a square matrix of order n. Show that $\operatorname{det}(A)=0$ if and only if there exists a non-zero vector $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $A X^{T}=0$.

Ans: If $\operatorname{det}(A) \neq 0$ then A is invertible and so the only solution of the system $A X^{T}=0$ is $\underline{0}$.

Conversely if $\operatorname{det}(A)=0$ then A is not invertible and hence the rref of A has a zero row and hence the system has a free variable. We can pick the value of the free variable as we please, specifically not 0 , and get a non-trivial solution.
(5) (Vandermonde Matrix) Find the determinant of the following matrix:

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
. . & . . & . . & \ldots & . . \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right)
$$

Ans: Let

$$
A_{n}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

If $n=2, \operatorname{det}\left(A_{2}\right)=x_{2}-x_{1}$. We will prove that

$$
\operatorname{det}\left(A_{n}\right)=\prod_{i<j}\left(x_{j}-x_{i}\right)
$$

Assume the result for $n-1$ and define

$$
F(x)=\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & x & x^{2} & \cdots & x^{n-1}
\end{array}\right|
$$

Then F is a polynomial of degree $n-1$ with roots $x_{1}, x_{2}, \ldots, x_{n-1}$. So, $F(x)=$ $c \prod_{i=1}^{n-1}\left(x-x_{i}\right)$ where c is coefficient of x^{n-1} which is clearly $\operatorname{det}\left(A_{n-1}\right)$. Therefore,

$$
F(x)=\operatorname{det}\left(A_{n-1}\right) \prod_{i=1}^{n-1}\left(x-x_{i}\right) .
$$

The result follows for n as

$$
\operatorname{det}\left(A_{n}\right)=F\left(x_{n}\right)=\operatorname{det}\left(A_{n-1}\right) \prod_{i=1}^{n-1}\left(x_{n}-x_{i}\right) .
$$

(6) Let A be a $n \times n$ real matrix. Show that $\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}$ and $\operatorname{adj}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-2} \cdot A$.

Ans: Note that for a matrix A we have $a \operatorname{dj}(A) \cdot A=\operatorname{det}(A) \cdot I_{n}$. If $\operatorname{det}(A)=0$ then $\operatorname{adj}(A)$ is not invertible and hence $\operatorname{det}(\operatorname{adj}(A))=0$.

Assume that $\operatorname{det}(A) \neq 0$. Then taking determinant both sides of the above identity we have $\operatorname{det}(\operatorname{adj}(A)) \cdot \operatorname{det}(A)=(\operatorname{det}(A))^{n}$. So $\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}$.

Again $\operatorname{adj}(A) \cdot \operatorname{adj}(\operatorname{adj}(A))=\operatorname{det}(\operatorname{adj}(A)) \cdot I_{n}=(\operatorname{det}(A))^{n-1} \cdot I_{n}$.
Multiplying by A we get $A \cdot \operatorname{adj}(A) \cdot \operatorname{adj}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1} \cdot A$. So $\operatorname{det}(A) \cdot \operatorname{adj}(\operatorname{adj}(A))=$ $(\operatorname{det}(A))^{n-1} \cdot A$ and hence $\operatorname{adj}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-2} . A$.
(7) Using Cramer's rule solve the following system:

$$
\begin{gathered}
x+2 y+3 z=1 \\
-x+2 z=2 \\
-2 y+z=-2
\end{gathered}
$$

Ans: Here $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 2 \\ 0 & -2 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\underline{\mathbf{d}}=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$
We have $A_{1}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 0 & 2 \\ -2 & -2 & 1\end{array}\right], A_{2}=\left[\begin{array}{ccc}1 & 1 & 3 \\ -1 & 2 & 2 \\ 0 & -2 & 1\end{array}\right]$ and $A_{3}=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 0 & 2 \\ 0 & -2 & -2\end{array}\right]$
Note that $\operatorname{det}(A)=12, \operatorname{det}\left(A_{1}\right)=-20, \operatorname{det}\left(A_{2}\right)=13$ and $\operatorname{det}\left(A_{3}\right)=2$.
So we have $x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-20}{12}, y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{13}{12}$ and $z=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=\frac{2}{12}$.

