ASSIGNMENT 2 MTH102A

(1) Using Gauss Jordan elimination method find the inverse of $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & -2 \\ -2 & 1 & 0 \\ 0 & -3 & -2 \\ -2 & 1 & 0 \\ 0 & -3 & -2 \\ -2 & 1 & 0 \\ 0 & 0 & -5/3 \\ -2/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -3/5 \\ -3/5 \\ -2/5 \\ -3/5 \\ -3/5 \\ -2/5 \\ -3/5 \\$

(a) Find sign of σ and sign of σ^{-1} ,

(b) Find $\sigma^2 = \sigma \circ \sigma$.

Ans: (a) In the cycle notation the above permutation can be written as $\sigma = (153)(24) = (15)(53)(24)$. There are odd number of transpositions required to express σ . So $sgn(\sigma) = -1$.

 $\sigma^{-1} = (24)(53)(15). \text{ So } sgn(\sigma^{-1}) = -1.$ (b) $\sigma^2(1) = 3, \sigma^2(2) = 2, \sigma^2(3) = 5, \sigma^2(4) = 4, \sigma^2(5) = 1.$ So $\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}.$ Using the definition compute the determinant of $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$

(3) Using the definition compute the determinant of $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ Ans: We have $S_3 = \{identity, (12), (23), (13), (123), (132)\}$

Recall that $Sgn(\sigma) = (-1)^k$ where k is the number of transpositions required to express σ .

$$\begin{split} &Sgn(identity) = 1, \ Sgn(12) = -1, \ Sgn(23) = -1, \ Sgn(13) = -1 \\ &(123) = (12)(23). \ \text{So} \ Sgn(123) = 1 \\ &(132) = (13)(23). \ \text{So} \ Sgn(132) = 1 \\ &\text{For a } 3 \times 3 \ \text{matrix} \ A = (a_{ij}) \ \text{we have} \ det(A) = \sum_{\sigma \in S_3} Sgn(\sigma)a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} \\ &\text{For } \sigma = identity \ \text{we have} \ a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} = a_{11}a_{22}a_{33} = 1 \\ &\text{For } \sigma = (12) \ \text{we have} \ a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} = a_{12}a_{21}a_{33} = 4 \\ &\text{For } \sigma = (13) \ \text{we have} \ a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} = a_{13}a_{22}a_{31} = 4 \\ &\text{For } \sigma = (23) \ \text{we have} \ a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} = a_{11}a_{23}a_{32} = 4 \\ &\text{For } \sigma = (123) \ \text{we have} \ a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} = a_{12}a_{21}a_{31} = 8 \\ &\text{For } \sigma = (132) \ \text{we have} \ a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} = a_{13}a_{21}a_{32} = 8 \\ &\text{For } \sigma = (132) \ \text{we have} \ a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)} = 1 - 4 - 4 - 4 + 8 + 8 = 5 \end{split}$$

(4) Let A be a square matrix of order n. Show that det(A) = 0 if and only if there exists a non-zero vector $X = (x_1, x_2, ..., x_n)$ such that $AX^T = 0$.

Ans: If $det(A) \neq 0$ then A is invertible and so the only solution of the system $AX^T = 0$ is <u>0</u>.

Conversely if det(A) = 0 then A is not invertible and hence the rref of A has a zero row and hence the system has a free variable. We can pick the value of the free variable as we please, specifically not 0, and get a non-trivial solution.

(5) (Vandermonde Matrix) Find the determinant of the following matrix:

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Ans: Let

$$A_n = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}$$

If n = 2, $det(A_2) = x_2 - x_1$. We will prove that

$$\det(A_n) = \prod_{i < j} (x_j - x_i).$$

Assume the result for n-1 and define

$$F(x) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x & x^2 & \cdots & x^{n-1} \end{vmatrix}$$

Then F is a polynomial of degree n-1 with roots $x_1, x_2, \ldots, x_{n-1}$. So, $F(x) = c \prod_{i=1}^{n-1} (x-x_i)$ where c is coefficient of x^{n-1} which is clearly det (A_{n-1}) . Therefore,

$$F(x) = \det(A_{n-1}) \prod_{i=1}^{n-1} (x - x_i).$$

The result follows for n as

$$\det(A_n) = F(x_n) = \det(A_{n-1}) \prod_{i=1}^{n-1} (x_n - x_i).$$

(6) Let A be a $n \times n$ real matrix. Show that $det(adj(A)) = (det(A))^{n-1}$ and $adj(adj(A)) = (det(A))^{n-2} A$.

Ans: Note that for a matrix A we have $adj(A)A = det(A)I_n$. If det(A) = 0 then adj(A) is not invertible and hence det(adj(A)) = 0.

Assume that $det(A) \neq 0$. Then taking determinant both sides of the above identity we have $det(adj(A)).det(A) = (det(A))^n$. So $det(adj(A)) = (det(A))^{n-1}$. Again $adj(A).adj(adj(A)) = det(adj(A)).I_n = (det(A))^{n-1}.I_n$.

Multiplying by A we get $A.adj(A).adj(adj(A)) = (det(A))^{n-1}.A$. So $det(A).adj(adj(A)) = (det(A))^{n-1}.A$ and hence $adj(adj(A)) = (det(A))^{n-2}.A$.

(7) Using Cramer's rule solve the following system:

$$x + 2y + 3z = 1$$

$$-x + 2z = 2$$

$$-2y + z = -2$$

Ans: Here $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ 0 & -2 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $\underline{\mathbf{d}} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$
We have $A_1 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 2 \\ -2 & -2 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 1 & 3 \\ -1 & 2 & 2 \\ 0 & -2 & 1 \end{bmatrix}$ and $A_3 = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 0 & -2 & -2 \end{bmatrix}$
Note that $det(A) = 12 \ det(A_1) = -20 \ det(A_2) = 13$ and $det(A_2) = 2$

Note that det(A) = 12, $det(A_1) = -20$, $det(A_2) = 13$ and $det(A_3) = 2$. So we have $x = \frac{det(A_1)}{det(A)} = \frac{-20}{12}$, $y = \frac{det(A_2)}{det(A)} = \frac{13}{12}$ and $z = \frac{det(A_3)}{det(A)} = \frac{2}{12}$.