ASSIGNMENT 3
 MTH102A

(1) In \mathbb{R}, consider the addition $x \oplus y=x+y-1$ and the scalar multiplication $\lambda . x=\lambda(x-1)+1$. Prove that \mathbb{R} is a vector space over \mathbb{R} with respect to these operations. What is the additive identity (the $\mathbf{0}$ vector in the definition) in this case?

Solution: Easy verification. Here the $\mathbf{0}$ vector is $1 \in \mathbb{R}$.
(2) Show that $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{4}-x_{3}=x_{2}-x_{1}\right\}$ is a subspace of \mathbb{R}^{4} spanned by vectors $(1,0,0,-1),(0,1,0,1),(0,0,1,1)$.

Solution:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & \in\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{4}-x_{3}=x_{2}-x_{1}\right\} \\
\Leftrightarrow\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\left(x_{1}, x_{2}, x_{3},-x_{1}+x_{2}+x_{3}\right) \text { as } x_{4}=-x_{1}+x_{2}+x_{3} \\
& =x_{1}(1,0,0,-1)+x_{2}(0,1,0,1)+x_{3}(0,0,1,1)
\end{aligned}
$$

Moreover, $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{4}-x_{3}=x_{2}-x_{1}\right\}$ is a subspace of \mathbb{R}^{4} because it is a linear span of vectors in \mathbb{R}^{4}.
(3) Describe all the subspaces of \mathbb{R}^{3}.

Solution: $\{0\}$ and \mathbb{R}^{3} are the trivial subspaces of \mathbb{R}^{3}. Any line passing through origin is an one-dimensional subspace of \mathbb{R}^{3} and any plane passing through origin is a 2 -dimensional subspace in \mathbb{R}^{3}. We claim that these are all the subspaces of \mathbb{R}^{3}.

Let W be a non-trivial subspace of \mathbb{R}^{3}. If $\operatorname{dim}(W)=1$ choose a basis $\{v\}$ of W. Then $W=\{a . v: a \in \mathbb{R}\}$. So W represents a line passing through origin in the direction of v. If $\operatorname{dim}(W)=1$ then choose a basis $\left\{v_{1}, v_{2}\right\}$ of W. Then $W=\operatorname{Span}\left\{v_{1}, v_{2}\right\}=\left\{a v_{1}+b v_{2}: a, b \in \mathbb{R}\right\}$. So W represents a plane passing through origin with normal vector $v_{1} \times v_{2}$.
(4) Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) \mid a x+$ $b y+c z=d\}$ is a subspace of \mathbb{R}^{3}.

Solution: Let $W=\{(x, y, z) \mid a x+b y+c z=d\}$. If W is a subspace then $(0,0,0) \in W$ and so $d=0$.
(5) Discuss the linear dependence/independence of following set of vectors:
(i) $\{(1,0,0),(1,1,0),(1,1,1)\}$ in \mathbb{R}^{3} as a vector space over \mathbb{R},

Ans: Linearly independent since the determinant of the matrix formed by taking $\{(1,0,0),(1,1,0),(1,1,1)\}$ as row vectors is non zero. So they are linearly independent.
(ii) $\{(1,0,0,0),(1,1,0,0),(1,1,1,0),(3,2,1,0)\}$ in \mathbb{R}^{4} as a vector space over \mathbb{R},

Ans: Linearly dependent since $(3,2,1,0)=(1,0,0,0)+(1,1,0,0)+$ $(1,1,1,0)$.
(iii) $\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$, in \mathbb{C}^{3} as a vector space over \mathbb{C},

Ans: $(i+2,-1,2)=i(1, i, 0)+(1,0,1)$. So they are linearly dependent.
(iv) $\{(1, i, 0),(1,0,1),(i+2,-1,2)\}$, in \mathbb{C}^{3} as a vector space over \mathbb{R},

Ans: If $a .(1, i, 0)+b(1,0,1)+c(i+2,-1,2)=0$ for $a, b, c \in \mathbb{R}$. Then we have $a=b=c=0$. So they are linearly independent.
(v) The sets $\{1, \sin x, \cos x\}$ and $\left\{2, \sin ^{2} x, \cos ^{2} x\right\}$ in the vector space of real valued functions $F=\{f: f: \mathbb{R} \rightarrow \mathbb{R}\}$.

Solution: Suppose $a \cdot 1+b \cdot \sin x+c \cdot \cos x=0$. Then the identity is true for all $x \in \mathbb{R}$.

For $x=0$ we have $a+c=0$. For $x=\pi / 2$ we have $a+b=0$ and for $x=-\pi / 2$ we have $a-b=0$. From these linear equations we have $a=b=c=0$. So the set $\{1, \sin x, \cos x\}$ is linearly independent. On the other hand we have $2 \sin ^{2} x+2 \cos ^{2} x-2=0$. So the set $\left\{2, \sin ^{2} x, \cos ^{2} x\right\}$ is linearly dependent.
(v) $\{u+v, v+w, w+u\}$ in a vector space V given that $\{u, v, w\}$ is linearly independent.

Ans: If $a(u+v)+b(v+w)+c(w+u)=0$ for some scalars a, b, c. Then we have $a+b=b+c=a+c=0$ and hence $a=b=c=0$. So $\{u+v, v+w, w+u\}$ is linearly independent.
(6) Let $W_{1}=\operatorname{Span}\{(1,1,0),(-1,1,0)\}$ and $W_{2}=\operatorname{Span}\{(1,0,2),(-1,0,4)\}$. Prove that $W_{1}+W_{2}=\mathbb{R}^{3}$.

Solution: The three vectors $(1,1,0),(-1,1,0),(1,0,2)$ are in $W_{1}+W_{2}$ and are linearly independent. So $\operatorname{Span}\{(1,1,0),(-1,1,0),(1,0,2)\}=W_{1}+W_{2}=$ \mathbb{R}^{3}.
(7) Find 3 vectors u, v and w in \mathbb{R}^{4} such that $\{u, v, w\}$ is linearly dependent whereas $\{u, v\},\{u, w\}$, and $\{v, w\}$ are linearly independent. Extend each of the linearly independent sets to a basis of \mathbb{R}^{4}.

Solution: Let $u=(1,0,0,0), v=(0,1,0,0)$ and $w=(1,1,0,0)$. Then since $w=u+v$, the set $\{u, v, w\}$ is linearly dependent whereas the sets $\{u, v\},\{u, w\}$, and $\{v, w\}$ are linearly independent.

Extending $\{u, v\}$ we have the set $\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$ a basis of \mathbb{R}^{4}.

Extending $\{v, w\}$ we have the set $\{((0,1,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)\}$ a basis of \mathbb{R}^{4}.

Extending $\{u, w\}$ we have the set $\{((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)\}$ a basis of \mathbb{R}^{4}.
(8) Let A be a $n \times n$ matrix over \mathbb{R}. Then A is invertible iff the row vectors are linearly independent over \mathbb{R} iff the column vectors are linearly independent over \mathbb{R}.

Solutions: We know that A is invertible iff the row reduced echelon form in the identity matrix iff the system $A x=0$ has only the trivial solution $x=0$. Let $C_{1}, C_{2}, \cdots, C_{n}$ be the column vectors of A. So A is invertible iff $b_{1} C_{1}+b_{2} C_{2}+\cdots+b_{n} C_{n}=0$ for some $b_{i} \in \mathbb{R}$ implies $b_{i}=0$ for all i. So A is invertible iff the column vectors of A are linearly independent over \mathbb{R}.
A is invertible iff A^{T} is invertible. So the row vectors of A are linearly independent over \mathbb{R} iff the column vectors of A are linearly independent over \mathbb{R}.
(9) Determine if the set $T=\left\{1, x^{2}-x+5,4 x^{3}-x^{2}+5 x, 3 x+2\right\}$ is a basis for the vector space of polynomials in x of degree ≤ 4. Is this set a basis for the vector space of polynomials in x of degree ≤ 3 ?

Solution If $a .1+b\left(x^{2}-x+5\right)+c\left(4 x^{3}-x^{2}+5 x\right)+d(3 x+2)=0$ then equating the coefficients we get $a=b=c=d=0$. So the set is linearly independent. But $x^{4} \notin \operatorname{Span}(T)$. So it is not a basis for the vector space of polynomials in x of degree ≤ 4. However since dimension of the vector space of polynomials in x of degree ≤ 3 is 4 the linearly independent set $T=\left\{1, x^{2}-x+5,4 x^{3}-x^{2}+5 x, 3 x+2\right\}$ is a basis.

