ASSIGNMENT 3 MTH102A

(1) In \mathbb{R} , consider the addition $x \oplus y = x + y - 1$ and the scalar multiplication $\lambda . x = \lambda (x-1) + 1$. Prove that \mathbb{R} is a vector space over \mathbb{R} with respect to these operations. What is the additive identity (the **0** vector in the definition) in this case ?

Solution: Easy verification. Here the **0** vector is $1 \in \mathbb{R}$.

(2) Show that $W = \{(x_1, x_2, x_3, x_4) : x_4 - x_3 = x_2 - x_1\}$ is a subspace of \mathbb{R}^4 spanned by vectors (1, 0, 0, -1), (0, 1, 0, 1), (0, 0, 1, 1).

Solution:

$$(x_1, x_2, x_3, x_4) \in \{(x_1, x_2, x_3, x_4) : x_4 - x_3 = x_2 - x_1\}$$

$$\Leftrightarrow (x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, -x_1 + x_2 + x_3) \text{ as } x_4 = -x_1 + x_2 + x_3$$

$$= x_1(1, 0, 0, -1) + x_2(0, 1, 0, 1) + x_3(0, 0, 1, 1)$$

Moreover, $\{(x_1, x_2, x_3, x_4) : x_4 - x_3 = x_2 - x_1\}$ is a subspace of \mathbb{R}^4 because it is a linear span of vectors in \mathbb{R}^4 .

(3) Describe all the subspaces of \mathbb{R}^3 .

Solution: $\{0\}$ and \mathbb{R}^3 are the trivial subspaces of \mathbb{R}^3 . Any line passing through origin is an one-dimensional subspace of \mathbb{R}^3 and any plane passing through origin is a 2-dimensional subspace in \mathbb{R}^3 . We claim that these are all the subspaces of \mathbb{R}^3 .

Let W be a non-trivial subspace of \mathbb{R}^3 . If dim(W) = 1 choose a basis $\{v\}$ of W. Then $W = \{a.v : a \in \mathbb{R}\}$. So W represents a line passing through origin in the direction of v. If dim(W) = 1 then choose a basis $\{v_1, v_2\}$ of W. Then $W = Span\{v_1, v_2\} = \{av_1 + bv_2 : a, b \in \mathbb{R}\}$. So W represents a plane passing through origin with normal vector $v_1 \times v_2$.

(4) Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) | ax + by + cz = d\}$ is a subspace of \mathbb{R}^3 .

Solution: Let $W = \{(x, y, z) | ax + by + cz = d\}$. If W is a subspace then $(0, 0, 0) \in W$ and so d = 0.

(5) Discuss the linear dependence/independence of following set of vectors:
(i) {(1,0,0), (1,1,0), (1,1,1)} in R³ as a vector space over R,

Ans: Linearly independent since the determinant of the matrix formed by taking $\{(1,0,0), (1,1,0), (1,1,1)\}$ as row vectors is non zero. So they are linearly independent.

(ii) $\{(1,0,0,0), (1,1,0,0), (1,1,1,0), (3,2,1,0)\}$ in \mathbb{R}^4 as a vector space over \mathbb{R} ,

Ans: Linearly dependent since (3, 2, 1, 0) = (1, 0, 0, 0) + (1, 1, 0, 0) + (1, 1, 1, 0).

(iii) $\{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$, in \mathbb{C}^3 as a vector space over \mathbb{C} , Ans: (i + 2, -1, 2) = i(1, i, 0) + (1, 0, 1). So they are linearly dependent.

(iv) $\{(1, i, 0), (1, 0, 1), (i + 2, -1, 2)\}$, in \mathbb{C}^3 as a vector space over \mathbb{R} , Ans: If a.(1, i, 0) + b(1, 0, 1) + c(i + 2, -1, 2) = 0 for $a, b, c \in \mathbb{R}$. Then we have a = b = c = 0. So they are linearly independent.

(v) The sets $\{1, sinx, cosx\}$ and $\{2, sin^2x, cos^2x\}$ in the vector space of real valued functions $F = \{f : f : \mathbb{R} \to \mathbb{R}\}.$

Solution: Suppose a.1 + b.sinx + c.cosx = 0. Then the identity is true for all $x \in \mathbb{R}$.

For x = 0 we have a + c = 0. For $x = \pi/2$ we have a + b = 0 and for $x = -\pi/2$ we have a - b = 0. From these linear equations we have a = b = c = 0. So the set $\{1, sinx, cosx\}$ is linearly independent. On the other hand we have $2sin^2x + 2cos^2x - 2 = 0$. So the set $\{2, sin^2x, cos^2x\}$ is linearly dependent.

(v) $\{u+v, v+w, w+u\}$ in a vector space V given that $\{u, v, w\}$ is linearly independent.

Ans: If a(u+v) + b(v+w) + c(w+u) = 0 for some scalars a, b, c. Then we have a+b = b+c = a+c = 0 and hence a = b = c = 0. So $\{u+v, v+w, w+u\}$ is linearly independent.

(6) Let $W_1 = Span\{(1,1,0), (-1,1,0)\}$ and $W_2 = Span\{(1,0,2), (-1,0,4)\}$. Prove that $W_1 + W_2 = \mathbb{R}^3$.

Solution: The three vectors (1, 1, 0), (-1, 1, 0), (1, 0, 2) are in $W_1 + W_2$ and are linearly independent. So $Span\{(1, 1, 0), (-1, 1, 0), (1, 0, 2)\} = W_1 + W_2 = \mathbb{R}^3$.

(7) Find 3 vectors u, v and w in \mathbb{R}^4 such that $\{u, v, w\}$ is linearly dependent whereas $\{u, v\}, \{u, w\}$, and $\{v, w\}$ are linearly independent. Extend each of the linearly independent sets to a basis of \mathbb{R}^4 .

Solution: Let u = (1, 0, 0, 0), v = (0, 1, 0, 0) and w = (1, 1, 0, 0). Then since w = u + v, the set $\{u, v, w\}$ is linearly dependent whereas the sets $\{u, v\}, \{u, w\}$, and $\{v, w\}$ are linearly independent.

Extending $\{u, v\}$ we have the set $\{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$ a basis of \mathbb{R}^4 . Extending $\{v, w\}$ we have the set $\{((0, 1, 0, 0), (1, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$ a basis of \mathbb{R}^4 .

Extending $\{u, w\}$ we have the set $\{((1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$ a basis of \mathbb{R}^4 .

(8) Let A be a n × n matrix over ℝ. Then A is invertible iff the row vectors are linearly independent over ℝ iff the column vectors are linearly independent over ℝ.

Solutions: We know that A is invertible iff the row reduced echelon form in the identity matrix iff the system Ax = 0 has only the trivial solution x = 0. Let C_1, C_2, \dots, C_n be the column vectors of A. So A is invertible iff $b_1C_1 + b_2C_2 + \dots + b_nC_n = 0$ for some $b_i \in \mathbb{R}$ implies $b_i = 0$ for all i. So A is invertible iff the column vectors of A are linearly independent over \mathbb{R} .

A is invertible iff A^T is invertible. So the row vectors of A are linearly independent over \mathbb{R} iff the column vectors of A are linearly independent over \mathbb{R} .

(9) Determine if the set $T = \{1, x^2 - x + 5, 4x^3 - x^2 + 5x, 3x + 2\}$ is a basis for the vector space of polynomials in x of degree ≤ 4 . Is this set a basis for the vector space of polynomials in x of degree ≤ 3 ?

Solution If $a.1 + b(x^2 - x + 5) + c(4x^3 - x^2 + 5x) + d(3x + 2) = 0$ then equating the coefficients we get a = b = c = d = 0. So the set is linearly independent. But $x^4 \notin Span(T)$. So it is not a basis for the vector space of polynomials in x of degree ≤ 4 . However since dimension of the vector space of polynomials in x of degree ≤ 3 is 4 the linearly independent set $T = \{1, x^2 - x + 5, 4x^3 - x^2 + 5x, 3x + 2\}$ is a basis.