ASSIGNMENT 4 MTH102A

- (1) Let $\{w_1, w_2, ..., w_n\}$ be a basis of a finite dimensional vector space V. Let v be a non zero vector in V. Show that there exists w_i such that if we replace w_i by v in the basis it still remains a basis of V.
- (2) Find the dimension of the following vector spaces :
 - (i) X is the set of all real upper triangular matrices,
 - (ii) Y is the set of all real symmetric matrices,
 - (iii) Z is the set of all real skew symmetric matrices,
 - (iv) W is the set of all real matrices with Tr(A) = 0
- (3) Let P₂(X, ℝ) be the vector space of all polynomials in X of degree less or equal to 2. Show that B = {X + 1, X² X + 1, X² + X 1} is a basis of P₂(X, ℝ). Determine the coordinates of the vectors 2X 1, 1 + X², X² + 5X 1 with respect to B.
- (4) Let W be a subspace of a finite dimensional vector space V
 (i) Show that there is a subspace U of V such that V = W + U and W ∩ U = {0},
 (ii) Show that there is no subspace U of V such that W ∩ U = {0} and dim(W) + dim(U) > dim(V).
- (5) Decide which of the following maps are linear transformations:
 - (i) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 2y, z, |x|),

(ii) Let $M_n(\mathbb{R})$ be the set of all $n \times n$ real matrices and $T : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by

- (a) $T(A) = A^T$,
- (b) T(A) = I + A, where I is the identity matrix of order n,
- (c) $T(A) = BAB^{-1}$, where $B \in M_n(\mathbb{R})$ is an invertible matrix.
- (6) Let $T : \mathbb{C} \to \mathbb{C}$ be defined by $T(z) = \overline{z}$. Show that T is \mathbb{R} -linear but not \mathbb{C} -linear.
- (7) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,0,0), T(1,1,0) = (1,1,1), T(1,1,1) = (1,1,0). Find T(x,y,z), Ker(T), R(T) (Range of T). Prove that $T^3 = T$.
- (8) Find all linear transformations from \mathbb{R}^n to \mathbb{R} .
- (9) Let $\mathcal{P}_n(X,\mathbb{R})$ be the vector space of all polynomials in X of degree less or equal to n. Let T be the differentiation transformation from $\mathcal{P}_n(X,\mathbb{R})$ to $\mathcal{P}_n(X,\mathbb{R})$. Find Range(T) and Ker(T).