ASSIGNMENT 4
 MTH102A

(1) Let $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a basis of a finite dimensional vector space V. Let v be a non zero vector in V. Show that there exists w_{i} such that if we replace w_{i} by v in the basis it still remains a basis of V.
(2) Find the dimension of the following vector spaces:
(i) X is the set of all real upper triangular matrices,
(ii) Y is the set of all real symmetric matrices,
(iii) Z is the set of all real skew symmetric matrices,
(iv) W is the set of all real matrices with $\operatorname{Tr}(A)=0$
(3) Let $\mathcal{P}_{2}(X, \mathbb{R})$ be the vector space of all polynomials in X of degree less or equal to 2 . Show that $B=\left\{X+1, X^{2}-X+1, X^{2}+X-1\right\}$ is a basis of $\mathcal{P}_{2}(X, \mathbb{R})$. Determine the coordinates of the vectors $2 X-1,1+X^{2}, X^{2}+5 X-1$ with respect to B.
(4) Let W be a subspace of a finite dimensional vector space V
(i) Show that there is a subspace U of V such that $V=W+U$ and $W \cap U=\{0\}$,
(ii) Show that there is no subspace U of V such that $W \cap U=\{0\}$ and $\operatorname{dim}(W)+$ $\operatorname{dim}(U)>\operatorname{dim}(V)$.
(5) Decide which of the following maps are linear transformations:
(i) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+2 y, z,|x|)$,
(ii) Let $M_{n}(\mathbb{R})$ be the set of all $n \times n$ real matrices and $T: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ defined by
(a) $T(A)=A^{T}$,
(b) $T(A)=I+A$, where I is the identity matrix of order n,
(c) $T(A)=B A B^{-1}$, where $B \in M_{n}(\mathbb{R})$ is an invertible matrix.
(6) Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $T(z)=\bar{z}$. Show that T is \mathbb{R}-linear but not \mathbb{C}-linear.
(7) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T(1,0,0)=(1,0,0), T(1,1,0)=$ $(1,1,1), T(1,1,1)=(1,1,0)$. Find $T(x, y, z), \operatorname{Ker}(T), R(T)$ (Range of $T)$. Prove that $T^{3}=T$.
(8) Find all linear transformations from \mathbb{R}^{n} to \mathbb{R}.
(9) Let $\mathcal{P}_{n}(X, \mathbb{R})$ be the vector space of all polynomials in X of degree less or equal to n. Let T be the differentiation transformation from $\mathcal{P}_{n}(X, \mathbb{R})$ to $\mathcal{P}_{n}(X, \mathbb{R})$. Find Range (T) and $\operatorname{Ker}(T)$.

