ASSIGNMENT 4
 MTH102A

(1) Let $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a basis of a finite dimensional vector space V. Let v be a non zero vector in V. Show that there exists w_{i} such that if we replace w_{i} by v in the basis it still remains a basis of V.

Solution. Let $v=\sum_{1}^{n} a_{i} w_{i}$ for some $a_{1}, \ldots, a_{n} \in \mathbb{F}$. Since v is non-zero, $a_{i} \neq 0$ for some $1 \leq i \leq n$. Assume $a_{1} \neq 0$. Write $w_{1}=\frac{1}{a_{1}} v-\sum_{i=2}^{n} \frac{a_{i}}{a_{1}} w_{i}$. Replace w_{1} by v. Clearly $\left\{v, w_{2}, \ldots ., w_{n}\right\}$ spans V. Now we show that this set is L.I.. Let $b_{1}, \ldots ., b_{n}$ be such that $b_{1} v+\sum_{j=2}^{n} b_{j} w_{j}=0$. Then $b_{1} \sum_{i=1}^{n} a_{i} w_{i}+\sum_{j=2}^{n} b_{j} w_{j}=0$ which implies $b_{1} a_{1} w_{1}+\sum_{j=2}^{n}\left(b_{1} a_{j}+b_{j}\right) w_{j}=0$. Since $w_{1}, w_{2}, \cdots w_{n}$ are LI we have $b_{1} a_{1}=0, b_{1} a_{j}+b_{j}=0$ for $2 \leq j \leq n$. Since $a_{1} \neq 0$ we have $b_{j}=0$ for all $1 \leq j \leq n$.
(2) Find the dimension of the following vector spaces:
(i) X is the set of all real upper triangular matrices,
(ii) Y is the set of all real symmetric matrices,
(iii) Z is the set of all real skew symmetric matrices,
(iv) W is the set of all real matrices with $\operatorname{Tr}(A)=0$

Solution. Let $E_{i j}$ be the matrix with $i j^{t h}$ entry one and all other entries are zero, $F_{i j}$ be the matrix with $i j^{t h}$ and $j i^{t h}$ entries are 1 and all other entries are zero and for $i \neq j$ define $D_{i j}$ to be the matrix with $i j^{t h}$ entry $1, j i^{\text {th }}$ entry -1 and all other entries are zero.
(i) The set $\left\{E_{i j} ; i \leq j\right\}$ forms a basis for X. Hence $\operatorname{dim}(X)=n+\frac{n^{2}-n}{2}=\frac{n(n+1)}{2}$. (ii) The set $\{F i j ; i \leq j\}$ is a basis for Y. Hence $\operatorname{dim}(Y)=\frac{n(n+1)}{2}$.
(iii) For a real skew-symmetric matrix all diagonal entries are zero. Then the set $\left\{D_{i j} ; i<j\right\}$ is a basis. Hence $\operatorname{dim}(Z)=\frac{n^{2}-n}{2}=\frac{n(n-1)}{2}$.
(iv) Let A be a matrix with trace zero. Then $\sum_{i=1}^{n} a_{i i}=0$. So $a_{11}=$ $-\left(a_{22}+\ldots+a_{n n}\right)$. The set $\left\{E_{i j}, E_{j i}: i \neq j\right\} \cup\left\{E_{i i}-E_{i+1, i+1}: 1 \leq i \leq n-1\right\}$ is a basis of W. Hence $\operatorname{dim}(W)=n^{2}-1$.
(3) Let $\mathcal{P}_{2}(X, \mathbb{R})$ be the vector space of all polynomials in X of degree less or equal to 2 . Show that $B=\left\{X+1, X^{2}-X+1, X^{2}+X-1\right\}$ is a basis of $\mathcal{P}_{2}(X, \mathbb{R})$. Determine the coordinates of the vectors $2 X-1,1+X^{2}, X^{2}+5 X-1$ with respect to B.

Solution. First we show that the set B is L.I.. Let $a_{0}, a_{1}, a_{2} \in \mathbb{R}$ such that $a_{0}(X+1)+a_{1}\left(X^{2}-X+1\right)+a_{2}\left(X^{2}+X-1\right)=0$. Then $a_{0}+a_{1}-a_{2}+\left(a_{0}-a_{1}+\right.$ $\left.a_{2}\right) X+\left(a_{1}+a_{2}\right) X^{2}=0$. From here we will get $a_{0}=a_{1}=a_{2}=0$.

Let $p(X)=a_{0}+a_{1} X+a_{2} X^{2}$ be any element in $\mathcal{P}_{2}(X, \mathbb{R})$. Let $b_{0}, b_{1}, b_{2} \in \mathbb{R}$ such that $p(X)=a_{0}+a_{1} X+a_{2} X^{2}=b_{0}(X+1)+b_{1}\left(X^{2}+X-1\right)+b_{3}\left(X^{2}-X+1\right)$ then we get $b_{0}=\frac{a_{0}+a_{1}}{2}, b_{1}=\frac{a_{0}-a_{1}+2 a_{2}}{4}, b_{2}=\frac{a_{1}-a_{0}+2 a_{2}}{4}$. Hence B spans $\mathcal{P}_{2}(X, \mathbb{R})$.

We have $2 X-1=\frac{1}{2}(X+1)-\frac{3}{4}\left(X^{2}-X+1\right)+\frac{3}{4}\left(X^{2}+X-1\right)$. So $[2 X-1]_{B}=$ $\left(\frac{1}{2},-\frac{3}{4}, \frac{3}{4}\right)$.
$1+X^{2}=\frac{1}{2}(X+1)+\frac{3}{4}\left(X^{2}-X+1\right)+\frac{1}{4}\left(X^{2}+X-1\right)$. So $\left[1+X^{2}\right]_{B}=\left(\frac{1}{2}, \frac{3}{4}, \frac{1}{4}\right)$.
$X^{2}+5 X-1=2(X+1)-1\left(X^{2}-X+1\right)+\left(X^{2}+X-1\right)$. So $\left[X^{2}+5 X-1\right]_{B}=(2,-1,1)$.
(4) Let W be a subspace of a finite dimensional vector space V
(i) Show that there is a subspace U of V such that $V=W+U$ and $W \cap U=\{0\}$,
(ii) Show that there is no subspace U of V such that $W \cap U=\{0\}$ and $\operatorname{dim}(W)+\operatorname{dim}(U)>\operatorname{dim}(V)$.

Solution.

(i) Let $\operatorname{dim}(V)=n$, since V is finite dimensional, W is also finite dimensional. Let $\operatorname{dim}(W)=k$ and let $B=\left\{w_{1}, \ldots, w_{k}\right\}$ be a basis for W. In case $k=n$ we take $U=\{0\}$. If $k<n$ we extend B to a basis $B_{1}=\left\{w_{1}, \ldots, w_{k}, v_{k+1}, \ldots, v_{n}\right\}$ of V. Let U be the subspace of V generated by $\left\{v_{k+1}, \ldots, v_{n}\right\}$.

Let $v \in V$. Then there exist scalars $a_{1}, \ldots, a_{n} \in \mathbb{F}$ such that $v=a_{1} w_{1}+\ldots+$ $a_{k} w_{k}+a_{k+1} v_{k+1}+\ldots+a_{n} v_{n}=\left(a_{1} w_{1}+\ldots .+a_{k} w_{k}\right)+\left(a_{k+1} v_{k+1}+\ldots+a_{n} v_{n}\right) \in W+U$.

Now we show that $W \cap U=\{0\}$. Let $v \in W \cap U$. Then there exist scalars a_{1}, \ldots, a_{k} and b_{k+1}, \ldots, b_{n} such that $a_{1} w_{1}+\ldots+a_{k} w_{k}=v=b_{k+1} v_{k+1}+\ldots .+b_{n} v_{n}$. We have $a_{1} w_{1}+\ldots+a_{k} w_{k}-b_{k+1} v_{k+1}-\ldots-b_{n} v_{n}=0$ Since B_{1} is a basis, $a_{1}=\ldots=a_{k}=b_{k+1}=\ldots=b_{n}=0$. Hence $W \cap U=\{0\}$. (ii) Let $W \cap U=\{0\}$. Then $\operatorname{dim}(W+U)=\operatorname{dim}(W)+\operatorname{dim}(U)-\operatorname{dim}(W \cap U)=$ $\operatorname{dim}(W)+\operatorname{dim}(U)$. So if $\operatorname{dim}(W)+\operatorname{dim}(U)>\operatorname{dim}(V)$ we have $\operatorname{dim}(W+U)>$ $\operatorname{dim}(V)$, which is a contradiction as $W+U$ is a subspace of V.
(5) Decide which of the following maps are linear transformations:
(i) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+2 y, z,|x|)$,
(ii) Let $M_{n}(\mathbb{R})$ be the set of all $n \times n$ real matrices and $T: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ defined by
(a) $T(A)=A^{T}$,
(b) $T(A)=I+A$, where I is the identity matrix of order n,
(c) $T(A)=B A B^{-1}$, where $B \in M_{n}(\mathbb{R})$ is an invertible matrix.

Solution.

(i) Not a linear transformation.

Take $a=-1$. Then $T(a(1,0,1))=T(-1,0,-1)=(-1,-1,1) \neq a T((1,0,1))=$ $-1(1,1,1)=(-1,-1,-1)$.
(ii) (a) Linear Transformation.

Let $A, B \in M_{n}(\mathbb{R})$ and $a \in \mathbb{R}$. Then $T(A+a B)=A+a B^{T}=A^{T}+a B^{T}$.
(b) Not a linear transformation.

Let O be the zero matrix. Then $T(O)=I \neq O$.
(c) Linear transformation.

Let $P, Q \in M_{n}(\mathbb{R})$ and $a \in \mathbb{R}$. Then $T(P+a Q)=B(P+a Q) B^{-1}=$ $B P B^{-1}+a B Q B^{-1}=T(P)+a T(Q)$.
(6) Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $T(z)=\bar{z}$. Show that T is \mathbb{R}-linear but not \mathbb{C}-linear.

Solution. Let $a+i b, c+i d \in \mathbb{C}$ and $\alpha \in \mathbb{R}$. Then $T((a+i b)+\alpha(c+i d))=$ $T(a+\alpha c+i(b+\alpha d))=a+\alpha c-i(b+\alpha d)=(a-i b)+\alpha(c-i d)=T(a+i b)+\alpha T(c+i d)$. Hence T is \mathbb{R}-linear whereas $T(i . i)=T(-1)=-1 \neq i T(i)=i(-i)=1$, so it is not \mathbb{C}-linear.
(7) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T(1,0,0)=(1,0,0), T(1,1,0)=$ $(1,1,1), T(1,1,1)=(1,1,0)$. Find $T(x, y, z), \operatorname{Ker}(T), R(T)$ (Range of $T)$. Prove that $T^{3}=T$.

Solution. Let $(x, y, z) \in \mathbb{R}^{3}$. Then $(x, y, z)=(x-y)(1,0,0)+(y-z)(1,1,0)+$ $z(1,1,1)$. We have $T((x, y, z))=(x-y) T(1,0,0)+(y-z) T(1,1,0)+z T(1,1,1)=$ $(x-y)(1,0,0)+(y-z)(1,1,1)+z(1,1,0)=(x, y, y-z)$.

Let $x=(a, b, c) \in \operatorname{Ker}(T)$, then $T(x)=(a, b, b-c)=(0,0,0)$ implies $(a, b, c)=$ $(0,0,0)$. Hence $\operatorname{Ker}(T)=\{(0,0,0)\}$.

$$
\begin{aligned}
& R(T)=\{(x, y, y-z) ; x, y, z \in \mathbb{R}\}=\operatorname{Span}\{(1,0,0),(0,1,1),(0,0,-1)\} \\
& T^{3}((x, y, z))=T^{2}((x, y, y-z))=T((x, y, y-(y-z)))=T((x, y, z))
\end{aligned}
$$

(8) Find all linear transformations from \mathbb{R}^{n} to \mathbb{R}.

Solution. For $a_{1}, \ldots ., a_{n} \in \mathbb{R}$, the map defined by $T\left(\left(x_{1}, \ldots, x_{n}\right)\right)=a_{1} x_{1}+\ldots . .+a_{n} x_{n}$ is a linear transformation. We claim that all the linear transformations are of this form for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Let $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ be the n-tuple with all components equal to 0 , except the i -th, which is 1 . Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear map. Suppose $T\left(e_{i}\right)=a_{i}$ for some $a_{i} \in \mathbb{R}, 1 \leq i \leq n$. Then $T\left(x_{1}, x_{2}, \cdots, x_{n}\right)=T\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right)=a_{1} x_{1}+\ldots . .+a_{n} x_{n}$.
(9) Let $\mathcal{P}_{n}(X, \mathbb{R})$ be the vector space of all polynomials in X of degree less or equal to n. Let T be the differentiation transformation from $\mathcal{P}_{n}(X, \mathbb{R})$ to $\mathcal{P}_{n}(X, \mathbb{R})$. Find $\operatorname{Range}(T)$ and $\operatorname{Ker}(T)$.

Solution. If $f(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n} \in \mathcal{P}_{n}(X, \mathbb{R})$ then $T(f)=$ $a_{1}+2 a_{2} X+\cdots+n a_{n} X^{n-1}$. So Range $(T)=\operatorname{Span}\left\{1, X, \cdots X^{n-1}\right\}$.
$\operatorname{Ker}(T)=\left\{f: T(f)=f^{\prime}=0\right\}$. So $\operatorname{Ker}(T)=\{f(X): f(X)=c$ for $c \in \mathbb{R}\}=$ $\operatorname{Span}\{1\}=\mathbb{R}$.

