ASSIGNMENT 5

MTH102A

(1) Show that there does not exist a linear map from \mathbb{R}^{5} to \mathbb{R}^{2} whose kernel is $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right): x_{1}=3 x_{2}\right.$ and $\left.x_{3}=x_{4}=x_{5}\right\}$.

Solutions: If $\phi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ is any linear map, then the rank-nullity theorem tells us that

$$
5=\operatorname{dim}(\operatorname{Ker}(\phi))+\operatorname{dim}(\operatorname{Im}(\phi)) .
$$

Since $\operatorname{Im}(\phi) \subset \mathbb{R}^{2}$, its dimension is at most 2 , so that $\operatorname{dim}(\operatorname{Ker}(\phi)) \geq 3$. The subspace in the question is

$$
\operatorname{Span}\{(3,1,0,0,0),(0,0,1,1,1)\}
$$

which is 2-dimensional. So it cannot possibly be the kernel of a linear map ϕ : $\mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$.
(2) Find a basis for the kernel and the basis for the image of the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by $T(p)=p^{\prime}+p^{\prime \prime}$ where $P_{2}(\mathbb{R})$ is the vector space of polynomials in x of degree less than or equal to n.

Solution: Note that $T\left(a x^{2}+b x+c\right)=2 a x+2 a+b$. Now

$$
\operatorname{ker} T=\left\{a x^{2}+b x+c: 2 a x+b+2 a=0\right\}
$$

that is $2 a=0$ and $2 a+b=0$. So $a=b=0$. So $\operatorname{Ker}(T)$ is the set of all constant (degree 0) polynomials which can be identified with \mathbb{R}. For the image note that $T(1)=0, T(x)=1, T\left(x^{2}\right)=2 x+2$. So Range $(T)=\operatorname{Span}\{1, x\}$.
(3) Find the matrix of the differentiation map on the vector space of polynomials in x of degree less than or equal to n with respect to the standard basis and verify the Rank-Nullity theorem.

Solution: The standard basis in this case is $B=\left\{1, x, x^{2}, \cdots, x^{n}\right\}$. Let D denotes the differentiation map. Then $D(1)=0, D(x)=1, \cdots, D\left(x^{n}\right)=n x^{n-1}$. So the matrix with respect to B is

$$
[D]_{B}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 2 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & n \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

So Range $(D)=\operatorname{Span}\left\{1, x, \cdots x^{n-1}\right\}$ and $\operatorname{Ker}(D)=\operatorname{Span}\{1\}=\mathbb{R}$. Since $\left\{1, x, \cdots x^{n-1}\right\}$ is LI, $\operatorname{rank}(D)=n . \operatorname{Nullity}(D)=1 . \operatorname{Sotank}(D)+\operatorname{Nullity}(D)=$ $n+1$.
(4) Determine the quotient vector space $M_{3}(\mathbb{R}) / W$, where $M_{3}(\mathbb{R})$ is the vector space of all 3×3 real matrices and W is the subspace of symmetric matrices, that is $W=\left\{A \in M_{3}(\mathbb{R}): A=A^{t}\right\}$.

Solution: Let $U=\left\{A \in M_{3}(\mathbb{R}): A^{T}=-A\right\}$ and define $T: M_{3}(\mathbb{R}) \rightarrow U$ by $A \mapsto A-A^{T}$. Then T is a linear map since
$A+B \mapsto A+B-(A+B)^{T}=\left(A-A^{T}\right)+\left(B-B^{T}\right)$ and $a \cdot A \mapsto a \cdot A-a \cdot A^{T}=$ a. $\left(A-A^{T}\right)$. Again T is onto because if $B \in U$ then $B=-B^{T}$ and $\frac{1}{4}\left(B-B^{T}\right) \mapsto B$.

We also have $\operatorname{Ker}(T)=W$. So $M_{3}(\mathbb{R}) / W \cong U$.
(5) Find the matrix of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, with respect to the standard basis of \mathbb{R}^{4} such that $\operatorname{Ker}(T)=\operatorname{Span}\{(2,1,1,2),(1,2,1,1)\}$ and $\operatorname{Range}(T)=\operatorname{Span}\{(1,0,1,0),(0,1,1,1)\}$.

Solution: Note that the standard basis of \mathbb{R}^{4} is

$$
B=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\} .
$$

Since $\{(2,1,1,2),(1,2,1,1)\}$ is LI we extend it to a basis of \mathbb{R}^{4}. So we take $\{(1,0,0,0),(2,1,1,2),(1,2,1,1),(0,0,0,1)\}$ to be a basis of \mathbb{R}^{4}. Now we define:

$$
\begin{aligned}
& T(1,0,0,0)=(1,0,1,0) \\
& T(2,1,1,2)=(0,0,0,0) \\
& T(1,2,1,1)=(0,0,0,0) \\
& T(0,0,0,1)=(0,1,1,1)
\end{aligned}
$$

Now, we have to compute the value of T on the vectors $(0,1,0,0),(0,0,1,0)$. In fact, we have that: $(0,1,0,0)=(1,2,1,1)-(2,1,1,2)+(1,0,0,0)+(0,0,0,1)$ and since T is linear, we have:

$$
\begin{align*}
T(0,1,0,0) & =T(1,2,1,1)-T(2,1,1,2)+T(1,0,0,0)+T(0,0,0,1) \tag{1}\\
& =T(1,0,0,0)+T(0,0,0,1) \tag{2}\\
& =(1,0,1,0)+(0,1,1,1) \tag{3}\\
& =(1,1,2,1) \tag{4}
\end{align*}
$$

Again $(0,0,1,0)=(1,2,1,1)-(1,0,0,0)-(0,0,0,1)-(0,1,0,0)$, so that:

$$
\begin{align*}
T(0,0,1,0) & =T(1,2,1,1)-T(1,0,0,0)-T(0,0,0,1)-T(0,1,0,0) \tag{5}\\
& =-T(1,0,0,0)-T(0,0,0,1)-T(0,1,0,0) \tag{6}\\
& =-(1,0,1,0)-(0,1,1,1)-(1,1,2,1) \tag{7}\\
& =(-2,-2,-4,-2) \tag{8}
\end{align*}
$$

Summarizing the above, we have obtained:

$$
\begin{align*}
& T(1,0,0,0)=(1,0,1,0) \tag{9}\\
& T(0,1,0,0)=(1,1,2,1) \tag{10}\\
& T(0,0,1,0)=(-2,-2,-4,-2) \tag{11}\\
& T(0,0,0,1)=(0,1,1,1) \tag{12}
\end{align*}
$$

Therefore, we have that $\operatorname{Range}(T)=\operatorname{Span}\{T(1,0,0,0), T(0,0,0,1)\}$
$=\operatorname{Span}\{(1,0,1,0),(0,1,1,1)\}$ and the kernel is $\operatorname{Span}\{(2,1,1,2),(1,2,1,1)\}$ as required. The matrix is

$$
[T]_{B}=\left(\begin{array}{cccc}
1 & 1 & -2 & 0 \\
0 & 1 & -2 & 1 \\
1 & 2 & -4 & 1 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

(6) Show that for any two matrices A and $B \operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A) \operatorname{rank}(B)\}$ and $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

Solution: Let the columns of A and B be a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} respectively. By definition, the rank of A and B are the dimensions of $\operatorname{Span}\left\{a_{1}, \ldots, a_{n}\right\}$ and $\operatorname{Span}\left\{b_{1}, \ldots, b_{n}\right\}$. Now the rank of $A+B$ is the dimension of the linear span of the columns of $A+B$, i.e. the dimension of $\operatorname{Span}\left\{a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right\}$. Since $\operatorname{Span}\left\{a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right\} \subseteq \operatorname{Span}\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}$ the result follows we have $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.

Note that rows of $A B$ are linear combinations of rows of B. So $\operatorname{rank}(A B) \leq$ $\operatorname{rank}(B)$. Since row rank of a matrix is same as the column rank we have $\operatorname{rank}(A B)=\operatorname{rank}\left((A B)^{T}\right)=\operatorname{rank}\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)$. So $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
(7) Show that for a matrix $A \operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A)$.

Solution: Let A be a $m \times n$ matrix and $x \in \mathbb{R}^{n}$ such that $x \in \operatorname{Null}(A)$. Then $A x=0$. Multiplying both sides with A^{T} from the left, we have $A^{T} A x=0$, which means $x \in \operatorname{Null}\left(A^{T} A\right)$. Therefore $\operatorname{Null}(A) \subseteq \operatorname{Null}\left(A^{T} A\right)$.

Now, assume $x \in \operatorname{Null}\left(A^{T} A\right)$, which implies $A^{T} A x=0$. Multiplying both sides with x^{T} from the left, we get

$$
x^{T} A^{T} A x=(A x)^{T}(A x)=0
$$

Now, defining $y=A x$, we see that $y^{T} y=0$, or

$$
\sum_{i=1}^{m} y_{i}^{2}=0
$$

Since y_{i} 's are real, this means $y_{i}=0$ for $i=1,2, \ldots, n$, which means

$$
A x=y=0
$$

which means $x \in \operatorname{Null}(A)$. Therefore $\operatorname{Null}\left(A^{T} A\right) \subseteq \operatorname{Null}(A)$. So we showed that $\operatorname{Null}\left(A^{T} A\right)=\operatorname{Null}(A)$. By Rank nullity theorem we have $\operatorname{Nullity}\left(A^{T} A\right)+$ $\operatorname{rank}\left(A^{T} A\right)=$ number of columns of $A^{T} A$. But number of columns of $A^{T} A=$ number of columns of A. So $\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A)$.
(8) Let V be a n dimensional vector space and W be a m dimensional vector space. Let $L(V, W)$ be the vector space of all linear maps from V to W. Find a basis for $L(V, W)$.

Solution: Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis of V and $\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ be a basis for W. Define

$$
f_{i j}: V \rightarrow W, v_{k} \mapsto \begin{cases}0 & k \neq i \\ w_{j} & k=i\end{cases}
$$

We claim that $\left\{f_{i j}: i=1,2 \cdots n, j=1,2, \cdots, m\right\}$ is a basis of $L(V, W)$.
Linear Independence: If $f=\sum_{i, j} a_{i j} f_{i j}=0$ for some scalars $a_{i j}$ then $f\left(v_{i}\right)=$ $\sum_{j} a_{i j} w_{j}=0$. Since $\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ is LI we have $a_{i j}=0$ for all j. So the functions $f_{i j}$ are LI.

Spanning: Let $f \in L(V, W)$ then $f\left(v_{i}\right)=\sum_{j} b_{i j} w_{j}$ for $i=1,2, \cdots, n$ and for some scalars $b_{i j}$. Then $f=\sum_{i, j} b_{i j} f_{i j}$ since $f\left(v_{k}\right)=\sum_{i, j} b_{i j} f_{i j}\left(v_{k}\right)$ for every $k=1,2, \cdots, n$. So $\left\{f_{i j}: i=1,2 \cdots n, j=1,2, \cdots, m\right\}$ is a basis of $L(V, W)$.
(9) Let V be a n dimensional vector space. Let B_{1} and B_{2} be two bases of V and let T be a linear operator on V. Show that there exists an invertible matrix P such that $[T]_{B_{1}}=P^{-1}[T]_{B_{2}} P$.

Solution: Let $B_{1}=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $B_{2}=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$. Let P be the change of basis matrix from B_{1} to B_{2}. Recall that $P=\left(\left[w_{1}\right]_{B_{1}},\left[w_{2}\right]_{B_{1}}, \cdots,\left[w_{n}\right]_{B_{1}}\right)$. Then for any $v \in V$ we have $[v]_{B_{1}}=P[v]_{B_{2}}$. In particular we have $[T(v)]_{B_{1}}=$ $P[T(v)]_{B_{2}}$. Note that $[T(v)]_{B_{1}}=[T]_{B_{1}}[v]_{B_{1}}$. Combining all these we get $[T]_{B_{1}} P[v]_{B_{2}}=P[T(v)]_{B_{2}}$. So $P^{-1}[T]_{B_{1}} P[v]_{B_{2}}=[T(v)]_{B_{2}}=[T]_{B_{2}}[v]_{B_{2}}$ and hence $[T]_{B_{1}}=P^{-1}[T]_{B_{2}} P$.
(10) Let T be a linear map from V to W. Show that T is non-singular $(\operatorname{Ker}(T)=\{0\})$ if and only if T carries each linearly independent subset of V to a linearly independent subset of W.

Solution: Suppose T is non-singular and let $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ be a LI subset of V. We claim that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \cdots, T\left(v_{k}\right)\right\}$ is a LI subset of W.

If $a_{1} T\left(v_{1}\right)+a_{2} T\left(v_{2}\right)+\cdots+a_{k} T\left(v_{k}\right)=0$ then $T\left(a_{1} v_{1}+\cdots+a_{k} v_{k}\right)=0$ and so $a_{1} v_{1}+\cdots+a_{k} v_{k}=0$ since T is non-singular. Then $a_{i}=0$ for all i.

Conversely, suppose T carries each linearly independent subset of V to a linearly independent subset of W. Let v be a non-zero vector in V. Since $\{v\}$ is LI, the set $\{T(v)\}$ is linearly independent. So $T(v) \neq 0$ and hence $v \notin \operatorname{Ker}(T)$. So $\operatorname{Ker}(T)=\{0\}$.

