
ASSIGNMENT 5

MTH102A

(1) Show that there does not exist a linear map from R
5 to R

2 whose kernel is

{(x1, x2, x3, x4, x5) : x1 = 3x2 and x3 = x4 = x5}.

Solutions: If φ : R5 → R
2 is any linear map, then the rank-nullity theorem

tells us that

5 = dim(Ker(φ)) + dim(Im(φ)).

Since Im(φ) ⊂ R
2, its dimension is at most 2, so that dim(Ker(φ)) ≥ 3. The

subspace in the question is

Span{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)},

which is 2-dimensional. So it cannot possibly be the kernel of a linear map φ :

R
5 → R

2.

(2) Find a basis for the kernel and the basis for the image of the linear transformation

T : P2(R) → P2(R) given by T (p) = p′ + p′′ where P2(R) is the vector space of

polynomials in x of degree less than or equal to n.

Solution: Note that T (ax2 + bx+ c) = 2ax+ 2a+ b. Now

kerT = {ax2 + bx+ c : 2ax+ b+ 2a = 0}

that is 2a = 0 and 2a+ b = 0. So a = b = 0. So Ker(T ) is the set of all constant

(degree 0) polynomials which can be identified with R. For the image note that

T (1) = 0, T (x) = 1, T (x2) = 2x+ 2. So Range(T ) = Span{1, x}.

(3) Find the matrix of the differentiation map on the vector space of polynomials in

x of degree less than or equal to n with respect to the standard basis and verify

the Rank-Nullity theorem.

Solution: The standard basis in this case is B = {1, x, x2, · · · , xn}. Let D

denotes the differentiation map. Then D(1) = 0, D(x) = 1, · · · , D(xn) = nxn−1.

So the matrix with respect to B is

[D]B =

















0 1 0 . . . 0

0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . n

0 0 0 . . . 0

















So Range(D) = Span{1, x, · · ·xn−1} and Ker(D) = Span{1} = R. Since

{1, x, · · ·xn−1} is LI, rank(D) = n. Nullity(D) = 1. So rank(D) +Nullity(D) =

n+ 1.
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(4) Determine the quotient vector space M3(R)/W , where M3(R) is the vector space

of all 3 × 3 real matrices and W is the subspace of symmetric matrices, that is

W = {A ∈ M3(R) : A = At}.

Solution: Let U = {A ∈ M3(R) : AT = −A} and define T : M3(R) → U by

A 7→ A−AT . Then T is a linear map since

A+B 7→ A+B − (A+B)T = (A−AT ) + (B −BT ) and a.A 7→ a.A− a.AT =

a.(A−AT ). Again T is onto because if B ∈ U then B = −BT and 1

4
(B−BT ) 7→ B.

We also have Ker(T ) = W . So M3(R)/W ∼= U .

(5) Find the matrix of the linear transformation T : R
4 → R

4, with respect to

the standard basis of R
4 such that Ker(T ) = Span{(2, 1, 1, 2), (1, 2, 1, 1)} and

Range(T ) = Span{(1, 0, 1, 0), (0, 1, 1, 1)}.

Solution: Note that the standard basis of R4 is

B = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

Since {(2, 1, 1, 2), (1, 2, 1, 1)} is LI we extend it to a basis of R
4. So we take

{(1, 0, 0, 0), (2, 1, 1, 2), (1, 2, 1, 1), (0, 0, 0, 1)} to be a basis of R4. Now we define:

T (1, 0, 0, 0) = (1, 0, 1, 0),

T (2, 1, 1, 2) = (0, 0, 0, 0),

T (1, 2, 1, 1) = (0, 0, 0, 0),

T (0, 0, 0, 1) = (0, 1, 1, 1).

Now, we have to compute the value of T on the vectors (0, 1, 0, 0), (0, 0, 1, 0). In

fact, we have that: (0, 1, 0, 0) = (1, 2, 1, 1)− (2, 1, 1, 2)+ (1, 0, 0, 0)+ (0, 0, 0, 1) and

since T is linear, we have:

T (0, 1, 0, 0) = T (1, 2, 1, 1)− T (2, 1, 1, 2) + T (1, 0, 0, 0) + T (0, 0, 0, 1)(1)

= T (1, 0, 0, 0) + T (0, 0, 0, 1)(2)

= (1, 0, 1, 0) + (0, 1, 1, 1)(3)

= (1, 1, 2, 1).(4)

Again (0, 0, 1, 0) = (1, 2, 1, 1)− (1, 0, 0, 0)− (0, 0, 0, 1)− (0, 1, 0, 0), so that:

T (0, 0, 1, 0) = T (1, 2, 1, 1)− T (1, 0, 0, 0)− T (0, 0, 0, 1)− T (0, 1, 0, 0)(5)

= −T (1, 0, 0, 0)− T (0, 0, 0, 1)− T (0, 1, 0, 0)(6)

= −(1, 0, 1, 0)− (0, 1, 1, 1)− (1, 1, 2, 1)(7)

= (−2,−2,−4,−2).(8)

Summarizing the above, we have obtained:

T (1, 0, 0, 0) = (1, 0, 1, 0)(9)

T (0, 1, 0, 0) = (1, 1, 2, 1)(10)

T (0, 0, 1, 0) = (−2,−2,−4,−2)(11)

T (0, 0, 0, 1) = (0, 1, 1, 1).(12)
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Therefore, we have that Range(T ) = Span{T (1, 0, 0, 0), T (0, 0, 0, 1)}

= Span{(1, 0, 1, 0), (0, 1, 1, 1)} and the kernel is Span{(2, 1, 1, 2), (1, 2, 1, 1)} as re-

quired. The matrix is

[T ]B =











1 1 −2 0

0 1 −2 1

1 2 −4 1

0 1 2 1











.

(6) Show that for any two matrices A and B rank(AB) ≤ min{rank(A), rank(B)}

and rank(A+B) ≤ rank(A) + rank(B).

Solution: Let the columns of A and B be a1, . . . , an and b1, . . . , bn respectively.

By definition, the rank of A and B are the dimensions of Span{a1, . . . , an} and

Span{b1, . . . , bn}. Now the rank of A + B is the dimension of the linear span of

the columns of A + B, i.e. the dimension of Span{a1 + b1, . . . , an + bn}. Since

Span{a1+b1, . . . , an+bn} ⊆ Span{a1, . . . , an, b1, . . . , bn} the result follows we have

rank(A+B) ≤ rank(A) + rank(B).

Note that rows of AB are linear combinations of rows of B. So rank(AB) ≤

rank(B). Since row rank of a matrix is same as the column rank we have

rank(AB) = rank((AB)T ) = rank(BTAT ) ≤ rank(AT ) = rank(A). So

rank(AB) ≤ min{rank(A), rank(B)}.

(7) Show that for a matrix A, rank(AAT ) = rank(A).

Solution: Let A be a m× n matrix and x ∈ R
n such that x ∈ Null(A). Then

Ax = 0. Multiplying both sides with AT from the left, we have ATAx = 0, which

means x ∈ Null(ATA). Therefore Null(A) ⊆ Null(ATA).

Now, assume x ∈ Null(ATA), which implies ATAx = 0. Multiplying both sides

with xT from the left, we get

xTATAx = (Ax)T (Ax) = 0

Now, defining y = Ax, we see that yT y = 0, or
m
∑

i=1

y2i = 0

Since yi’s are real, this means yi = 0 for i = 1, 2, ..., n, which means

Ax = y = 0

which means x ∈ Null(A). Therefore Null(ATA) ⊆ Null(A). So we showed

that Null(ATA) = Null(A). By Rank nullity theorem we have Nullity(ATA) +

rank(ATA) = number of columns of ATA. But number of columns of ATA=

number of columns of A. So rank(AAT ) = rank(A).

(8) Let V be a n dimensional vector space and W be a m dimensional vector space.

Let L(V,W ) be the vector space of all linear maps from V to W . Find a basis for

L(V,W ).
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Solution: Let {v1, v2, · · · , vn} be a basis of V and {w1, w2, · · · , wm} be a basis

for W . Define

fij : V → W, vk 7→







0 k 6= i,

wj k = i,
.

We claim that {fij : i = 1, 2 · · ·n, j = 1, 2, · · · ,m} is a basis of L(V,W ).

Linear Independence: If f =
∑

i,j aijfij = 0 for some scalars aij then f(vi) =
∑

j aijwj = 0. Since {w1, w2, · · · , wm} is LI we have aij = 0 for all j. So the

functions fij are LI.

Spanning: Let f ∈ L(V,W ) then f(vi) =
∑

j bijwj for i = 1, 2, · · · , n and

for some scalars bij . Then f =
∑

i,j bijfij since f(vk) =
∑

i,j bijfij(vk) for every

k = 1, 2, · · · , n. So {fij : i = 1, 2 · · ·n, j = 1, 2, · · · ,m} is a basis of L(V,W ).

(9) Let V be a n dimensional vector space. Let B1 and B2 be two bases of V and let

T be a linear operator on V . Show that there exists an invertible matrix P such

that [T ]B1
= P−1[T ]B2

P .

Solution: Let B1 = {v1, v2, · · · , vn} and B2 = {w1, w2, · · · , wn}. Let P be the

change of basis matrix from B1 to B2. Recall that P = ([w1]B1
, [w2]B1

, · · · , [wn]B1
).

Then for any v ∈ V we have [v]B1
= P [v]B2

. In particular we have [T (v)]B1
=

P [T (v)]B2
. Note that [T (v)]B1

= [T ]B1
[v]B1

. Combining all these we get

[T ]B1
P [v]B2

= P [T (v)]B2
. So P−1[T ]B1

P [v]B2
= [T (v)]B2

= [T ]B2
[v]B2

and hence

[T ]B1
= P−1[T ]B2

P .

(10) Let T be a linear map from V toW . Show that T is non-singular (Ker(T ) = {0}) if

and only if T carries each linearly independent subset of V to a linearly independent

subset of W .

Solution: Suppose T is non-singular and let {v1, v2, · · · , vk} be a LI subset of

V . We claim that {T (v1), T (v2), · · · , T (vk)} is a LI subset of W .

If a1T (v1) + a2T (v2) + · · ·+ akT (vk) = 0 then T (a1v1 + · · ·+ akvk) = 0 and so

a1v1 + · · ·+ akvk = 0 since T is non-singular. Then ai = 0 for all i.

Conversely, suppose T carries each linearly independent subset of V to a linearly

independent subset of W . Let v be a non-zero vector in V . Since {v} is LI, the

set {T (v)} is linearly independent. So T (v) 6= 0 and hence v /∈ Ker(T ). So

Ker(T ) = {0}.


