ASSIGNMENT 6
 MTH102A

(1) Let A and B be square matrices of same order. Prove that characteristic polynomials of $A B$ and $B A$ are same. Do $A B$ and $B A$ have same minimal polynomial ?

Solution: If one of them invertible, say A is invertible then $A^{-1}(A B) A=B A$. So AB and BA being similar have same characteristic polynomial. Suppose none of them is invertible.
Define two matrices C and D of order $n \times n$ as follows,
$C=\left(\begin{array}{cc}x I_{n} & A \\ B & I_{n}\end{array}\right)$ and $D=\left(\begin{array}{cc}I_{n} & 0 \\ -B & x I_{n}\end{array}\right)$, where I_{n} is the identity matrix of order n and x is an indeterminate.
Now check that ,

$$
\begin{aligned}
& \operatorname{det}(C D)=x^{n} \operatorname{det}\left(x I_{n}-A B\right) \\
& \operatorname{det}(D C)=x^{n} \operatorname{det}\left(x I_{n}-B A\right)
\end{aligned}
$$

as $\operatorname{det}(C D)=\operatorname{det}(D C)$ we get

$$
\operatorname{det}\left(x I_{n}-A B\right)=\operatorname{det}\left(x I_{n}-B A\right)
$$

So the characteristic polynomials of $A B$ and $B A$ are same.
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Then $A B=A$ whereas $B A$ is the zero matrix. Since $A^{2}=0$ and $A \neq 0$, the minimal polynomial of $A B$ is x^{2} whereas the minimal polynomial of $B A$ is x.
(2) Let A be an $n \times n$ matrix. Show that A and A^{T} have same eigen values. Do they have the same eigen vectors?

Solution: $\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left(A^{T}-(\lambda I)^{T}\right)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}(A-\lambda I)$. So they have same characteristic polynomial and therefore same eigenvalues.
Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then 1 is an eigenvalue of A and A^{T} but the eigenvectors with respect to the eigen value 1 are $\binom{1}{0}$ and $\binom{0}{1}$ respectively.
(3) Find the characteristic and minimal polynomial of the following matrix and decide if this matrix is diagonalizable.

$$
A=\left[\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]
$$

Solution: The characteristic polynomial is $f_{A}(x)=\operatorname{det}(x I-A)$.
Here $x I-A=\left[\begin{array}{ccc}x-5 & 6 & 6 \\ 1 & x-4 & -2 \\ -3 & 6 & x+4\end{array}\right]$
So $f_{A}(x)=(x-1)(x-2)^{2}$. The minimal polynomial is by definition is the smallest degree monic polynomial $m(x)$ such that $m(A)=0$.

We know that $m(x)$ divides $f_{A}(x)$ and they have the same roots. So the possibilities for $m(x)$ are $(x-1)(x-2)$ and $(x-1)(x-2)^{2}$.

Since $(A-I)(A-2 I)=0$ the minimal polynomial is $(x-1)(x-2)$. Since the minimal polynomial is a product of distinct linear factors, the matrix A is diagonalizable.
(4) Find the inverse of the matrix $\left(\begin{array}{ccc}-1 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 2\end{array}\right)$ using the Cayley-Hamilton theorem. Solution: The matrix A is: $A=\left[\begin{array}{ccc}-1 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 2\end{array}\right]$,
So the characteristic polynomial $p_{A}(\lambda)$ is
$p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}-1-\lambda & 2 & 0 \\ 1 & 1-\lambda & 0 \\ 2 & -1 & 2-\lambda\end{array}\right]=(-1-\lambda)(1-\lambda)(2-\lambda)-$
$2(2-\lambda)=\left(\lambda^{2}-1\right)(2-\lambda)-4+2 \lambda=-\lambda^{3}+2 \lambda^{2}+3 \lambda-6$,
and by Cayley-Hamilton theorem we have
$0=p_{A}(A)=-A^{3}+2 A^{2}+3 A-6 I \Rightarrow A\left(-A^{2}+2 A+3 I\right)=6 I$ or $A\left(\frac{1}{6}\left(-A^{2}+\right.\right.$ $2 A+3 I))=I$ which shows that $A^{-1}=\frac{1}{6}\left(-A^{2}+2 A+3 I\right)$.
(5) Diagonalize $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$ and compute A^{2019}.

Solution: The characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 2 & 0 \\
2 & 1-\lambda & 0 \\
0 & 0 & -3-\lambda
\end{array}\right]\right)
\end{aligned}
$$

So $f_{A}(\lambda)=(1-\lambda)((1-\lambda)(-3-\lambda)-0)-2(2(-3-\lambda)-0)$. So the eigen values are $\lambda=-3, \lambda=-1$ and $\lambda=3$.

$$
\begin{gathered}
(A-\lambda I) \mathbf{x}=\left[\begin{array}{lll}
4 & 2 & 0 \\
2 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Here we can clearly see that all solutions \mathbf{x} to this system are of the form $t\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, for some scalar t. Thus $v_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is the eigenvector associated with the eigenvalue $\lambda=-3$ of the matrix A.

Following the exact same procedure: we see that the other two eigenvectors are $v_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ with respect to the eigen values -1 and 3 respectively.
Let $P=\left[\begin{array}{ccc}0 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$. Then $P^{-1} A P=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$.
We have $P^{-1}=\left[\begin{array}{ccc}0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$.
Then $A=P\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right] P^{-1}$. Hence $A^{2019}=P\left[\begin{array}{ccc}-3^{2019} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3^{2019}\end{array}\right] P^{-1}$.
Multiplying we get the answer.
(6) Let W be the subspace of \mathbb{R}^{4} spanned by $\left\{u_{1}=(1,1,1,1), u_{2}=(2,4,1,5), u_{3}=\right.$ $(2,0,4,0)\}$. Using the standard Euclidean inner product on \mathbb{R}^{4} find an orthogonal basis for W.

Solution: It is an inductive process, so first let's define:

$$
v_{1}:=u_{1}=(1,1,1,1) .
$$

Then, by Gram-Schmidt orthogonalization process:

$$
\begin{aligned}
v_{2}: & =u_{2}-\frac{\left\langle u_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \\
& =u_{2}-\frac{2+4+1+5}{4} v_{1}=(2,4,1,5)-3(1,1,1,1) \\
& =(-1,1,-2,2)
\end{aligned}
$$

and finally

$$
\begin{aligned}
v_{3} & =u_{3}-\frac{\left\langle u_{3}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}-\frac{\left\langle u_{3}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \\
& =u_{3}-\frac{-10}{10} v_{2}-\frac{6}{4} v_{1} \\
& =(2,0,4,0)+(-1,1,-2,2)-\frac{3}{2}(1,1,1,1) \\
& =\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

(7) Consider $P_{2}(\mathbb{R})$ together with inner product:

$$
\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Find an orthogonal basis for $P_{2}(\mathbb{R})$.
Solution: The standard basis for $P_{2}(\mathbb{R})$ is $B=\left\{1, x, x^{2}\right\}$.
Using the Gram-Schmidt process:
Let $v_{1}=1$
Let

$$
v_{2}=x-P_{v_{1}}(x)=x-\frac{\left\langle x, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} \cdot v_{1}=x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle} \cdot 1
$$

Since $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x$,

$$
\begin{gathered}
\langle x, 1\rangle=\int_{0}^{1} x \cdot 1 d x=\int_{0}^{1} x d x=\frac{1}{2} \\
\langle 1,1\rangle=\int_{0}^{1} 1 \cdot 1 d x=\int_{0}^{1} 1 d x=1 \\
\Rightarrow v_{2}=x-\frac{1}{2} \\
v_{3}=x^{2}-P_{v_{1}}\left(x^{2}\right)-P_{v_{2}}\left(x^{2}\right)=x^{2}-\frac{\left\langle x^{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} \cdot v_{1}-\frac{\left\langle x^{2}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} \cdot v_{2}=x^{2}-x+\frac{1}{6} .
\end{gathered}
$$

So the set $\left\{1, x-\frac{1}{2}, x^{2}-x+\frac{1}{6}\right\}$ is an orthogonal basis for $P_{2}(\mathbb{R})$.
(8) Is the following matrix orthogonally diagonalizable? If yes, then find P such that $P A P^{T}$ is diagonal.

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Solutions: Since the matrix A is symmetric, we know that it can be orthogonally diagonalized. We first find its eigenvalues by solving the characteristic equation:

$$
0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=-(\lambda-3) \lambda^{2} \Longrightarrow\left\{\begin{array}{l}
\lambda_{1}=0 \\
\lambda_{2}=0 \\
\lambda_{3}=3
\end{array}\right.
$$

We now find the eigenvectors corresponding to $\lambda=0$:

$$
\begin{aligned}
&\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \Longrightarrow \mathbf{x}=\left(\begin{array}{c}
s \\
t \\
-s-t
\end{array}\right)=s\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+t\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
& \text { So }\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \text { and }\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \text { are the eigen vectors with respect to the eigen value } 0 .
\end{aligned}
$$

By orthonormalizing them, we obtain

$$
\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right)\right\}
$$

We finally find the eigenvector corresponding to $\lambda=3$:

$$
\left(\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc|c}
0 & -3 & 3 & 0 \\
1 & -2 & 1 & 0 \\
0 & 3 & -3 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc|c}
0 & -1 & 1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \Longrightarrow \mathbf{x}=\left(\begin{array}{l}
s \\
s \\
s
\end{array}\right)=s\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

By normalizing it, we obtain

$$
\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
$$

Hence A is orthogonally diagonalized by the orthogonal matrix

$$
P=\left(\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right)
$$

Furthermore,

$$
P^{T} A P=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

(9) Find the singular value decomposition of the matrix $A=\left(\begin{array}{cc}-2 & 2 \\ -1 & 1 \\ 2 & -2\end{array}\right)$.

Solution: Recall that the singular values of A are the square roots of the nonzero eigenvalues of $A^{T} A$ (or $A A^{T}$). In this case

$$
A^{T} A=\left(\begin{array}{cc}
9 & -9 \\
-9 & 9
\end{array}\right)
$$

and the eigenvalues of $A^{T} A$ are 0 and 18 , so the only singular value is $\sqrt{18}$.
To find the matrix V, we need to find an eigenvectors for $A^{T} A$ and normalize them. For the eigenvalue $\lambda=18$ an normalized eigenvector is $\frac{1}{\sqrt{2}}\binom{-1}{1}$. For $\lambda=0$ an eigenvector of $\frac{1}{\sqrt{2}}\binom{1}{1}$ and so

$$
V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Σ is the 3×2 matrix whose diagonal is composed of the singular values

$$
\Sigma=\left(\begin{array}{cc}
\sqrt{18} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

Finally $A V=U \Sigma$ and the colums of U are the eigenvectors of $A A^{T}$, solving this system of equations you get that

$$
U=\frac{1}{3}\left(\begin{array}{ccc}
2 & \frac{3}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
1 & 0 & \sqrt{8} \\
-2 & \frac{3}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

We have $A=U \Sigma V^{T}$.
(10) Let $M_{n \times n}$ be the vector space of all real $n \times n$ matrices. Show that $\langle A, B\rangle=$ $\operatorname{Tr}\left(A^{T} B\right)$ is an inner product on $M_{n \times n}$. Show that the orthogonal complement of the subspace of symmetric matrices is the subspace of skew-symmetric matrices, i.e., $\left\{A \in M_{n \times n} \mid A \text { is symmetric }\right\}^{\perp}=\left\{A \in M_{n \times n} \mid A\right.$ is skew-symmetric $\}$.

Solution: Showing $\langle A, B\rangle=\operatorname{Tr}\left(A^{T} B\right)$ is an inner product is easy.
Let A be symmetric and B be skew-symmetric. First we need to prove that $\langle A, B\rangle=0$.
$\langle A, B\rangle=\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}(A B)=\operatorname{Tr}(B A)=\operatorname{Tr}\left(-B^{T} A\right)=\langle-B, A\rangle=$ $-\langle A, B\rangle . S o\langle A, B\rangle=0$.

Note that $\langle A, B\rangle=\operatorname{Tr}\left(A^{T} B\right)=\sum_{i, j} a_{i j} b_{i j}$. Let $E_{i j}$ be the zero matrix except for a one in the (i, j) position.

Suppose $\langle A, S\rangle=0$ for all symmetric matrices, then it is true for $S=E_{i j}+E_{j i}$. This gives $\left\langle A, E_{i j}\right\rangle+\left\langle A, E_{j i}\right\rangle=0$, which gives $a_{i j}+a_{j i}=0$, from which it follows that $A=-A^{T}$.

