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ASSIGNMENT 6
MTH102A

Let A and B be square matrices of same order. Prove that characteristic poly-
nomials of AB and BA are same. Do AB and BA have same minimal polynomial ?

Solution: If one of them invertible, say A is invertible then A='(AB)A = BA.
So AB and BA being similar have same characteristic polynomial. Suppose none
of them is invertible.

Define two matrices C and D of order n x n as follows,

C = <xln A) and D = ( In 0 ), where I, is the identity matrix of order
B I, -B =z,

n and x is an indeterminate.

Now check that ,

det(CD) = z"det(xI, — AB)

det(DC) = z"det(z1, — BA)

as det(CD)=det(DC) we get
det(zI, — AB) = det(zI, — BA).
So the characteristic polynomials of AB and BA are same.

Let A = <8 (1)> and B = (8 ?) Then AB = A whereas BA is the zero

matrix. Since A2 = 0 and A # 0, the minimal polynomial of AB is 2> whereas the
minimal polynomial of BA is x.
Let A be an n x n matrix. Show that A and A” have same eigen values. Do they
have the same eigen vectors 7

Solution: det(AT — \I) = det(AT — (AI)T) = det((A — A\I)T) = det(A — \I).
So they have same characteristic polynomial and therefore same eigenvalues.

1 1
Let A= 0 1) Then 1 is an eigenvalue of A and A” but the eigenvectors with

1 0
respect to the eigen value 1 are (0) and <1> respectively.

Find the characteristic and minimal polynomial of the following matrix and decide
if this matrix is diagonalizable.



ASSIGNMENT 6 MTH102A

5 —6 —6
A=1|-1 4 2
3 -6 —4

Solution: The characteristic polynomial is f4(z) = det(zl — A).
r—5 6 6
Here 21 — A = 1 z—-4 =2
-3 6 x+4

So fa(z) = (x — 1)(x — 2)%. The minimal polynomial is by definition is the
smallest degree monic polynomial m(x) such that m(A) = 0.

We know that m(x) divides f4(x) and they have the same roots. So the possi-
bilities for m(z) are (z — 1)(z —2) and (z — 1)(x — 2)2.

Since (A — I)(A — 2I) = 0 the minimal polynomial is (z — 1)(z — 2). Since
the minimal polynomial is a product of distinct linear factors, the matrix A is

diagonalizable.
-1 2 0
(4) Find the inverse of the matrix | 1 1 0 | using the Cayley-Hamilton theorem.
2 -1 2
-1 2 0
Solution: The matrix Ais: A= | 1 1 0],
2 -1 2
So the characteristic polynomial pa(A) is
—1-A 2 0
pa(N\) = det(A—AI) = det 1 1-X 0 =(—1=-M)1=-N)(2-)\)—
2 -1 2=

22—A) =N =1)(2— ) —4+2)x = -3 +2)2 43\ -6,
and by Cayley-Hamilton theorem we have

0=pa(A)=—A%+2A42 +3A 6] = A(—A2+2A+3I) =61 or A(é(_A2 T
2A + 31)) = I which shows that A~! = é(—A2 +2A +3I).

1 2 0
(5) Diagonalize A= [2 1 0 | and compute A2019,
00 -3
Solution: The characteristic polynomial is
1 2 0 A0 O
det(A—AXl)=det|[ 2 1 O0|—[0 X O
0 0 -3 0 0 X
1—A 2 0

= det 2 1-—A 0
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So fa(A) =1 =XN)((1—=X)(=3—-X)—0)—2(2(—3—A) —0). So the eigen values
are A\ =—-3, A=—1and A = 3.
4 2 0| |= 0
(A-X)x= |2 4 0| |z2| = |0
0 0 Of |zs 0
1 0 0| |x1 0
0 1 0f |z2| = |0
0 0 Of |3 0
0
Here we can clearly see that all solutions x to this system are of the form ¢ |0],
1
0
for some scalar t. Thus vy = |0 is the eigenvector associated with the eigenvalue
1

A = —3 of the matrix A.
Following the exact same procedure: we see that the other two eigenvectors are

-1 1
vo= | 1 | and v3 = |1| with respect to the eigen values —1 and 3 respectively.
0 0
0 -1 1 -3 0 0
Let P=|0 1 1|. Then P 'AP=|0 -1 0
1 0 0 0 0 3
0 0 1
We have P71 = —% % 0].
: 20
-3 0 0 =309 0 0
Then A=P|0 -1 0| P L Hence A9 = p 0 -1 0o | P71
0 0 3 0 0 32019

Multiplying we get the answer.

(6) Let W be the subspace of R* spanned by {u; = (1,1,1,1),us = (2,4,1,5),u3 =
(2,0,4,0)}. Using the standard Euclidean inner product on R* find an orthogonal
basis for W.

Solution: It is an inductive process, so first let’s define:

vy :=u; = (1,1,1,1).

Then, by Gram-Schmidt orthogonalization process:

vy —u 7<’U,2,’Ul>
2 2 <U17U1> '
2444145
_u2_$vl:(2,4,1,5)—3(1,1,1,1)
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and finally

(ug,va) ~ (us,01)

VST s T <U27U2> 2 <’017’U1>v1
06
AT
3
=(2,0,4,0) 4+ (—1,1,-2,2) — 5(1, 1,1,1)
1 111
- (_57_57 57 5)

(7) Consider P»(R) together with inner product:

(p(x),q(z)) = /0 p(x)q() d.

Find an orthogonal basis for P>(R).
Solution: The standard basis for Py(R) is B = {1, z, z%}.
Using the Gram-Schmidt process:

Let v1 =1
Let
<.%',?}1> <$7 1>
fd _P’U e — . — — . 1
Vg =T (x)==z Tor 1) v =1 iy
Since (p(z), q(z)) = [ p(a)q(z) da,
1 1 1
<m,1>:/x-1dx:/:vdx:
0 0 2
1 1
<1,1>:/ 1~1d:c:/ ldr =1
0 0
IR
Vo =T — 5
2 2
2 2 2 2 (z%,01) (z%,v9) 2 1
— 22— P, - P, — 22— vy — .
v3 =2 L (x9) (%) =1z (or.on) V1 (02, 02) Vg =T T+ 5

So the set {1,z — §,2% — 2 + £} is an orthogonal basis for P,(R).
(8) Is the following matrix orthogonally diagonalizable 7 If yes, then find P such that
PAPT is diagonal.
1 1 1
A=11 1 1
1 11
Solutions: Since the matrix A is symmetric, we know that it can be orthog-

onally diagonalized. We first find its eigenvalues by solving the characteristic

equation:
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1-Xx 1 1 A =0
O=det(A—-X)=| 1 1-X 1 |=-A=-3)) = { \=
R A3 =3

We now find the eigenvectors corresponding to A = 0:

1 1 110 1 1 110 S 0
1 1 110 == 00 0|0 == x= t =s| 0 |+t 1
11 11]0 0 0 0]0 —s—t -1 -1
1 0
So| 0 | and | 1 | are the eigen vectors with respect to the eigen value 0.
-1 -1

By orthonormalizing them, we obtain

We finally find the eigenvector corresponding to A = 3:

-2 1 110 0 -3 3|0 0 -1 110 s
1 =2 1|0 = 1 -2 1|0 = 1 -1 00 == x=|s
1 1 =210 0 3 =-3|0 0 0 0f0 S

By normalizing it, we obtain

1
10
V3 1
Hence A is orthogonally diagonalized by the orthogonal matrix
1/V?2 1/v3
P= 0 1/v3
—1/V2 1/V3
Furthermore,
000
pPfAP=10 0 0
0 0 3
-2 2
(9) Find the singular value decomposition of the matrix A= | -1 1

2 =2
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Solution: Recall that the singular values of A are the square roots of the
nonzero eigenvalues of AT A (or AAT). In this case

AT A — 9 -9
-9 9

and the eigenvalues of AT A are 0 and 18, so the only singular value is v/18.
To find the matrix V, we need to find an eigenvectors for AT A and normalize

-1
them. For the eigenvalue A\ = 18 an normalized eigenvector is % ( ) ) For

1
_ : 1
A = 0 an eigenvector of 7 <1> and so

1 (-1 1
V:ﬂ(l 1>'

Y is the 3 x 2 matrix whose diagonal is composed of the singular values
V18 0
Y= 0 0
0 0
Finally AV = UY and the colums of U are the eigenvectors of AA”, solving this

system of equations you get that

9 3 _ 1

1 Vi \a
3 1

2 B o

We have A =UXVT,
Let My, be the vector space of all real n x n matrices. Show that (A, B) =
Tr(AT B) is an inner product on M, ,. Show that the orthogonal complement of
the subspace of symmetric matrices is the subspace of skew-symmetric matrices,
ie., {A € Myyy | Ais symmetric}™ = {A € My, | A is skew-symmetric}.

Solution: Showing (A, B) = Tr(A” B) is an inner product is easy.

Let A be symmetric and B be skew-symmetric. First we need to prove that
(A,B) =0.

(A,B) = Tr(ATB) = Tr(AB) = Tr(BA) = Tr(-BTA) =(-B,A) =
—(A, B).So(A, B) = 0.

Note that (A, B) = Tr(ATB) = >i; @ijbij. Let Ej; be the zero matrix except
for a one in the (i, j) position.

Suppose (A, S) = 0 for all symmetric matrices, then it is true for S = E;; + Ej;.
This gives (A, E;;) + (A, Ej;) = 0, which gives a;; + aj; = 0, from which it follows
that A = —AT.



