ASSIGNMENT 6
 MTH102A

(1) Let A and B be square matrices of same order. Prove that characteristic polynomials of $A B$ and $B A$ are same. Do $A B$ and $B A$ have same minimal polynomial ?
(2) Let A be an $n \times n$ matrix. Show that A and A^{T} have same eigen values. Do they have the same eigen vectors?
(3) Find the characteristic and minimal polynomial of the following matrix and decide if this matrix is diagonalizable.

$$
A=\left[\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]
$$

(4) Find the inverse of the matrix $\left(\begin{array}{ccc}-1 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 2\end{array}\right)$ using the Cayley-Hamilton theorem.
(5) Diagonalize $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$ and compute A^{2019}.
(6) Let W be the subspace of \mathbb{R}^{4} spanned by $\left\{u_{1}=(1,1,1,1), u_{2}=(2,4,1,5)\right.$, $u_{3}=$ $(2,0,4,0)\}$. Using the standard Euclidean inner product on \mathbb{R}^{4} find an orthogonal basis for W.
(7) Consider $P_{2}(\mathbb{R})$ together with inner product: $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x$. Find an orthogonal basis for $P_{2}(\mathbb{R})$.
(8) Is the following matrix orthogonally diagonalizable? If yes, then find P such that $P A P^{T}$ is diagonal.

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(9) Find a singular value decomposition of the matrix $A=\left(\begin{array}{cc}-2 & 2 \\ -1 & 1 \\ 2 & -2\end{array}\right)$.
(10) Let $M_{n \times n}$ be the vector space of all real $n \times n$ matrices. Show that $\langle A, B\rangle=$ $\operatorname{Tr}\left(A^{T} B\right)$ is an inner product on $M_{n \times n}$. Show that the orthogonal complement of the subspace of symmetric matrices is the subspace of skew-symmetric matrices, i.e., $\left\{A \in M_{n \times n} \mid A \text { is symmetric }\right\}^{\perp}=\left\{A \in M_{n \times n} \mid A\right.$ is skew-symmetric $\}$.

