MTH 102, ODE: Assignment-2

1. Find general solution of the following differential equations:

$$
(\mathbf{T})(i)(x+2 y+1)-(2 x+y-1) y^{\prime}=0 \quad \text { (ii) } y^{\prime}=(8 x-2 y+1)^{2} /(4 x-y-1)^{2}
$$

2. Find the solution of the initial value problem

$$
x y^{\prime}=y+\frac{2 x^{4}}{y} \cos \left(x^{2}\right), \quad y(\sqrt{\pi / 2})=\sqrt{\pi} .
$$

3. Reduce the differential equation

$$
y^{\prime}=f\left(\frac{a x+b y+m}{c x+d y+n}\right), a d-b c \neq 0
$$

to a separable form. Also discuss the case of $a d=b c$.
4. Show that the following equations are exact and hence find their general solution:

$$
(\mathbf{T})(i)(\cos x \cos y-\cot x)=(\sin x \sin y) y^{\prime}(i i) y^{\prime}=2 x\left(y e^{-x^{2}}-y-3 x\right) /\left(x^{2}+3 y^{2}+e^{-x^{2}}\right)
$$

5. Show that if the differential equation is of the form

$$
x^{a} y^{b}(m y d x+n x d y)+x^{c} y^{d}(p y d x+q x d y)=0
$$

where $a, b, c, d, m, n, p, q \in \mathbb{R}(m q \neq n p)$ are constants, then there exits suitable $h, k \in \mathbb{R}$ such that $x^{h} y^{k}$ is an integrating factor. Hence find a general solution of $\left(x^{1 / 2} y-x y^{2}\right)+$ $\left(x^{3 / 2}+x^{2} y\right) y^{\prime}=0$.
6. (\mathbf{T}) Given that the equation $\left(3 y^{2}-x\right)+2 y\left(y^{2}-3 x\right) y^{\prime}=0$ admits an integrating factor which is a function of $\left(x+y^{2}\right)$. Hence solve the differential equation.
7. Consider first order ODE $M(x, y) d x+N(x, y) d y=0$ with M, N are C^{1} functions on \mathbb{R}^{2}. Show that
(T)(i) If $\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) / N=f(x)$ depends on x only then, $\exp \left(\int f(x) d x\right)$ is an integrating factor for the given ODE.
(ii) If $\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) / M=g(y)$ depends on y only then, $\exp \left(-\int g(y) d y\right)$ is an integrating factor for the given ODE.
8. Find integrating factor and solve the following.
(T) (i) $2 \sin \left(y^{2}\right)+x y \cos \left(y^{2}\right) y^{\prime}=0$.
(ii) $x y-\left(x^{2}+y^{4}\right) y^{\prime}=0$.
9. (T) Show that the set of solutions of the homogeneous linear equation, $y^{\prime}+P(x) y=0$ on an interval $I=[a, b]$ form a vector subspace W of the real vector space of continuous functions on I. What is the dimension of W ?
10. Solve the linear first order linear IVP $y^{\prime}+y \tan x=\sin 2 x, \quad y(0)=1$.
11. (T) Let ϕ_{i} be a solution of $y^{\prime}+a y=b_{i}(x)$ for $i=1,2$. Show that $\phi_{1}+\phi_{2}$ satisfies $y^{\prime}+a y=b_{1}(x)+b_{2}(x)$.
Solve $y^{\prime}+y=x+1, y^{\prime}+y=\cos 2 x$. Hence solve $y^{\prime}+y=1+x / 2-\cos ^{2} x$
12. Using appropriate substitution, reduce the following differential equations into linear form and solve:
(T) (i) $y^{2} y^{\prime}+y^{3} / x=x^{-2} \sin x$
(T) (ii) $y^{\prime} \sin y+x \cos y=x$
(iii) $y^{\prime}=y\left(x y^{3}-1\right)$
13. (T) A radioactive substance A decays into B, which then further decays to C.
a) If the decay constants of A and B are respectively λ_{1} and λ_{2}, and the initial amounts are respectively A_{0} and B_{0}, set up an ODE for determining $B(t)$, the amount of B present at time t, and solve it. (Assume $\lambda_{1} \neq \lambda_{2}$.)
b) Assume $\lambda_{1}=1, \lambda_{2}=2$. When $\mathrm{B}(\mathrm{t})$ reaches a maximum?
14. According to Newton's Law of Cooling, the rate at which the temperature T of a body changes is proportional to the difference between T and the external temperature. At time $t=0$, a pot of boiling water is removed from the stove. After five minutes, the water temperature is $80 C$. If the room temperature is $20 C$, when will the water have cooled to $60 C$?

