ODE: Assignment-3

1. (T) A surface $z=y^{2}-x^{2}$ in the shape of a saddle is lying outdoors in a rainstorm. Find the paths along which raindrops will run down the surface.

Solution:

A curve on the surface is determined by a curve $y=y(x)$ on the $x y$-plane. The raindrop will take the path where z decreases at maximum rate. We know that for a real valued differentiable function $f(x, y), f$ will have maximum increase rate in direction ∇f and maximum decrease rate in direction $-\nabla f$ (This comes from the fact that directional derivative of f in direction $v,|v|=1$, is given by $(\nabla f) \cdot v)$.
So the required curve in $x y$-plane will have slope $-\nabla f=(2 x,-2 y)$. So its differential equation is $d y / d x=-2 y / 2 x$. Solving we get $x y=c$. Thus the curve on the surface is the intersection of the saddle $z=x^{2}-y^{2}$ with hyperbolic cylinder $x y=c$.
2. (T) Does $f(x, y)=x y^{2}$ satisfies Lipschitz condition (LC) on any rectangle $[a, b] \times[c, d]$? What about on an infinite strip $[a, b] \times \mathbb{R}$?
[A function $f(x, y)$ is said to satisfy Lipschitz condition on a domain $D \subseteq \mathbb{R}^{2}$, if there exists $L>0$ such that $\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|$ for all $\left(x, y_{1}\right),\left(x, y_{2}\right) \in D$.]

Solution:

On closed rectangle $[a, b] \times[c, d]$, the partial derivative f_{y} is continuous and hence bounded and hence f satisfies LC. Alternatively,

$$
\frac{\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|}{\left|y_{1}-y_{2}\right|}=|x|\left|y_{1}+y_{2}\right| \leq \max \{|a|,|b|\} \times 2 \max \{|c|,|d|\}
$$

On the vertical strip, $|x|$ is bounded but $\left|y_{1}+y_{2}\right|$ can be made arbitrarily large for large choices of y_{1} and y_{2}. So f does not satisfy LC there.
3. (\mathbf{T}) Let $\left(x_{0}, y_{0}\right)$ be an arbitrary point in the plane and consider the initial value problem (IVP)

$$
y^{\prime}=y^{2}, \quad y\left(x_{0}\right)=y_{0} .
$$

Explain why Picard theorem guarantees that this problem has a unique solution on some interval $\left|x-x_{0}\right| \leq h$. Since $f(x, y)=y^{2}$ and $\partial f / \partial y$ are continuous on the entire plane, it is tempting to conclude that this solution is valid for all x. But considering the solutions through the points $(0,0)$ and $(0,1)$, show that this consideration is sometime true and sometime false, and that therefore the inference is not legitimate.
[Remark: Compare the above with the fact that if f is continuous and Lipschitz on $[a, b] \times \mathbb{R}$, then the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}, \quad x_{0} \in[a, b]$ has solution over $[a, b]$. Simmons book Theorem B in chapter 'The Existence and Uniqueness of Solutions'.]

Solution:

Since $f(x, y)=y^{2}$ and $\partial f / \partial y$ are continuous on the entire plane, they are continuous on any closed rectangle containing $\left(x_{0}, y_{0}\right)$. Hence Picard theorem guarantees unique solution on some interval $\left|x-x_{0}\right| \leq h$.

Solving the equation we get $y=-\frac{1}{x+c}$. Initial condition $y(0)=1$ gives us $y=\frac{1}{1-x}$ which is valid for $(-\infty, 1)$. For initial condition $y(0)=0$, we cant find value of c. But we observe that $y(x)=0$ satisfies the equation with $y(0)=0$. So it is valid for all \mathbb{R}.
4. (T) Consider the IVP $y^{\prime}=2 \sin (3 x y), y(0)=y_{0}$. Show that it has unique solution in $(-\infty, \infty)$.

Solution:

It suffices to show that it has unique solution on every interval $[-L, L]$. This is because if we have a unique solution on $\left[-L_{1}, L_{1}\right]$ and a unique solution on $\left[-L_{2}, L_{2}\right]$ with $L_{2}>L_{1}$, then by uniqueness part the two solution has to agree on the smaller interval $\left[-L_{1}, L_{1}\right]$.
Now fix L. Define $R=[-L, L] \times\left[y_{0}-b, y_{0}+b\right.$ for some large $b>0$. Note that the function $f(x, y)=2 \sin (3 x y)$ satisfies $\mid f \leq 2$ and $\left|f_{y}\right| \leq 6 L$ on the rectangle R. So by Picard theorem, unique solution exist on the interval $[-h, h]$ where $h=\min \{L, b / 2\}$. We can choose $b>2 L$ so that $h=L$. Thus we get a unique solution on $[-L, L]$.
5. (T) Given

$$
y^{\prime}=\frac{e^{y^{2}}-1}{1-x^{2} y^{2}}, \quad y(-2)=1 .
$$

Find an interval on which solution exist.

Solution:

Here our function f is defined by $f=\frac{e^{y^{2}}-1}{1-x^{2} y^{2}}$ and $x_{0}=-2, y_{0}=1$. Thus we need to pick a rectangle R which is centered at $(-2,1)$. In this rectangle we need to have f, f_{y} continuous and so we certainly have to choose R so small that it contains no points at which the denominator $1-x^{2} y^{2}$ vanishes. The exact choice of the rectangle is up to you.

We choose $a=1 / 2, \quad b=1 / 4$ so that

$$
R=\left[x_{0}-a, x_{0}+a\right] \times\left[y_{0}-b, y_{0}+b\right]=[-5 / 2,-3 / 2] \times[3 / 4,5 / 4],
$$

so that R is disjoint from the hyperbolas $x y= \pm 1$.
On R, we have $x^{2} \geq 9 / 4, y^{2} \geq 9 / 16$ and therefore $\left|1-x^{2} y^{2}\right| \geq(81 / 64)-1=17 / 64>1 / 4$. Also $\left|e^{y^{2}}-1\right| \leq e^{9 / 16}<e<3$. Thus $|f(x, y)| \leq 3 \times 4=12=M$ on R. This is a legitimate (but non-optimal) bound.

Since R is disjoint from $x y= \pm 1$, clearly f_{y} will be continuous on R. So by Picard theorem unique solution will exist on $[-2-h,-2+h]$ for $h=\min \{a, b / M\}=\min \{1 / 2,1 / 48\}=1 / 48$.
6. (T) Consider the ode $y^{\prime}=\frac{2 x y}{x^{2}-y^{2}}$. Solve it. Sketch the solutions. Verify Picard theorem for initial values in $\mathbb{R}^{2}-\left\{(x, y): x^{2}=y^{2}\right\}$. What is your solution passing through $(1,0)$?

Solution:

Comparing with $M d x+N d y=0$, we have $M=2 x y, N=x^{2}-y^{2}$. So $\frac{1}{M}\left(M_{y}-N_{x}\right)=2 / y$. So integrating factor is $e^{-\int 1 / y d y}=1 / y^{2}$. We get solution $x^{2}+y^{2}=c y$.
(Also we can solve it as homogeneous equation.)
Solution curves are circles with centre on the y-axis and touching the x axis at the origin.

The function $f(x, y)=\frac{2 x y}{x^{2}-y^{2}}$ and f_{y} is continuous on $D=\mathbb{R}^{2}-\left\{(x, y): \quad x^{2}=y^{2}\right\}$. So Picard theorem tells us: given any $\left(x_{0}, y_{0}\right) \in D$ there passes through a unique solution curve.

Given initial condition $\left(x_{0}, y_{0}\right), x_{0} \neq 0$ there is circle as above passing though that point.
For point $\left(x_{0}, 0\right), x_{0} \neq 0$ we can not find a circle like that. But we observe that $y(x)=0$ is also a solution of the equation and so this must be the unique solution passing through $\left(x_{0}, 0\right), x_{0} \neq 0$.
7. A function $f(x, y)$ is said to satisfy Lipschitz condition on a domain $D \subseteq \mathbb{R}^{2}$, if there exists $L>0$ such that $\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|$ for all $\left(x, y_{1}\right),\left(x, y_{2}\right) \in D$.
(i) Show that if $f(x, y)$ satisfies Lipschitz condition (LC)with respect to y on a rectangle D, then for each fixed x, the resulting function of y is continuous function of y.
(ii) Let $f(x, y)=y+[x]$. Then how that f satisfies LC on \mathbb{R}^{2} but not continuous on \mathbb{R}^{2}.
(iii) Let $f(x, y)=x y$. Then show that f is continuous on \mathbb{R}^{2} but not LC on \mathbb{R}^{2}.

Solution:

(i) Follows from definition.
(ii) Let $f(x, y)=y+[x]$. Clearly $\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|=\left|y_{1}-y_{2}\right|$, so LC is satisfied on the entire plane. But f is not continuous for any integral x.
(iii) Let $f(x, y)=x y$. It is continuous on entire plane, being polynomial. But $\frac{\mid f\left(x, y_{1}\right)-f\left(x, y_{2} \mid\right.}{\left|y_{1}-y_{2}\right|}=$ $|x|$ can be made arbitrarily large on \mathbb{R}^{2}. So LC not satisfied on \mathbb{R}^{2}.
8. (T) What does Picard theorem says about existence and uniqueness of solution of the IVP $y^{\prime}=(3 / 2) y^{1 / 3}, \quad y(0)=0$? Show that it has uncountably many solutions.

Solution:

Here $f(x, y)=(2 / 3) y^{1 / 3}$ is continuous on the plane. So Picard theorem (Peano existence) tells us that it has at least one solution. But f_{y} is not continuous in any rectangle containing $(0,0)$ and also f does not satisfy Lipschitz condition on any rectangle containing (0,0). So we can not say anything about uniqueness of the solution from the theorem.

Solving the equation we get $y^{2}=x^{3}$. Also $y(x)=0$ satisfies the IVP. Moreover, $y(x)=(x-a)^{3 / 2}$ for $x \geq a$ and $y(x)=0$ for $x \leq a$ also satisfies the IVP for any $a \geq 0$ (just need check derivative at $x=a$ exists and equal to 0). Thus we get uncountably many solutions.
9. Consider the IVP $y^{\prime}=\sqrt{y}+1, \quad y(0)=0, \quad x \in[0,1]$. Show that $f(x, y)=\sqrt{y}+1$ does not satisfy Lipschitz condition in any rectangle containing origin, but still the solution is unique.
(Remark: It is fact that if an IVP, with f is continuous (not necessarily Lipschitz), has more than one solution, then it has uncountably many solutions. This is known as Kneser's Theorem. The previous exercise illustrates this phenomenan.)

Solution:

Consider any rectangle $R=[0, a] \times[0, d]$ containing origin We have

$$
\frac{\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|}{\left|y_{1}-y_{2}\right|}=\frac{\left|\sqrt{y_{1}}-\sqrt{y_{2}}\right|}{\left|y_{1}-y_{2}\right|}=1 / \sqrt{\delta}, \quad \text { for } y_{1}=\delta>0, \quad y_{2}=0 .
$$

For δ arbitrary small, we can make $\frac{\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|}{\left|y_{1}-y_{2}\right|}$ arbitrarily large on R. Hence f does not satisfy Lipschitz condition in any rectangle containing origin.
Let $g_{1}(x), g_{2}(x)$ be two solutions of the IVP. Consider $z(x)=\left(\sqrt{g_{1}}-\sqrt{g_{2}}\right)^{2}$. Then $z^{\prime}(x)=$ $-\frac{z(x)}{\sqrt{g_{1}} \sqrt{g_{2}}} \leq 0$. Thus $z(x)$ is a decreasing function. Further $z(x)$ is non negative and $z(0)=0$. Then $z(x)=0$ for all $x \geq 0$. Hence $g_{1}=g_{2}$.
10. (T) (i) Let $f(x, y)$ be continuous on the closed rectangle $R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b$. Show that y is a solution of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ iff

$$
y(x)=y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t
$$

(ii) Let $|f(x, y)| \leq M$ on the closed rectangle R and $y_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{n-1}(t)\right) d t$, with $y_{0}(x)=y_{0}$. Use induction to show that $y_{n+1}(x)$ is well defined for $I:\left|x-x_{0}\right| \leq h$, where $h=\min \{a, b / M\}$; that is $\left|y_{n}(x)-y_{0}\right| \leq b$ for $x \in I$.
(Remark: The sequence of functions $y_{n}(x)$ are called Picard's Iterates. Precisely because of this step, the solution exist in possibly smaller interval in Picard theorem.)

Solution:

(i) Let $y(x)$ is the solution to $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$. Then $y^{\prime}=f(x, y(x)), y\left(x_{0}\right)=y_{0}$. Integrating from x_{0} to x we get $y(x)-y_{0}=\int_{x_{0}}^{x} f(t, y(t)) d t$.
Conversely, let $y(x)=y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t$. Then $y\left(x_{0}\right)=y_{0}$ and from fundamental theorem of integral calculus, $y^{\prime}=f(x, y(x))=f(x, y)$.
(ii) For $n=0, y_{0}(x) \equiv y_{0}$ and the relation is obvious. For $n=1,\left|y_{1}(x)-y_{0}\right|=\left|\int_{x_{0}}^{x} f\left(t, y_{0}(t)\right) d t\right| \leq$ $\int_{x_{0}}^{x}\left|f\left(t, y_{0}(t)\right)\right| d t \leq M h \leq b$. Let it be true for $n=m$ and so $\left|y_{m}(x)-y_{0}\right| \leq b$. So for $a \leq x \leq b,\left(x, y_{m}(x)\right)$ lies in the rectangle R and hence $\left|f\left(x, y_{m}(x)\right)\right| \leq M$. Therefore, $\left|y_{m+1}-y_{0}\right| \leq \int_{x_{0}}^{x}\left|f\left(t, y_{m}(t)\right)\right| d t \leq M h \leq b$. Hence proved.
11. Use Picard's method of successive approximation to solve the following initial value problems and compare these results with the exact solutions:
(i) $(\mathbf{T}) y^{\prime}=2 \sqrt{x}, y(0)=1$
(ii) $y^{\prime}+x y=x, y(0)=0$
(iii) $y^{\prime}=2 \sqrt{y} / 3, y(0)=0$

Solution:

Picard iteration is $y_{n+1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{n}(t)\right) d t$ with $y_{0}(x) \equiv y_{0}$.
(i) $y_{0}=1, y_{n}(x)=1+2 \int_{0}^{x} \sqrt{t} d t=1+(4 / 3) x^{3 / 2}, n \geq 1$ (since f is independent of y). Here $y_{n}(x)(n \geq 1)$ coincides with the exact solution.
(ii) For exact solution

$$
\frac{d y}{1-y}=x d x \Longrightarrow-\ln (1-y)=\frac{x^{2}}{2}+C
$$

Using $y(0)=0$ we find $C=0$. So,

$$
1-y=e^{-x^{2} / 2} \Longrightarrow y=1-e^{-x^{2} / 2}
$$

Now we calculate the Picard iterates. Here $f(x, y)=x(1-y)$ and $y_{0}=0$. Thus $y_{1}(x)=$ $\int_{0}^{x} t(1-0) d t=x^{2} / 2$. Using y_{1}, we get $y_{2}(x)=\int_{0}^{x} t\left(1-t^{2} / 2\right) d t=x^{2} / 2-\left(x^{2} / 2\right)^{2} / 2$. $y_{3}(x)=$
$x^{2} / 2-\left(x^{2} / 2\right)^{2} / 2+\left(x^{2} / 2\right)^{3} / 3$!. By induction, we get $y_{n}(x)=\sum_{m=1}^{n}(-1)^{m-1}\left(x^{2} / 2\right)^{m} / m$!. Thus as $n \rightarrow \infty, y_{n}(x) \rightarrow-\sum_{m=0}^{\infty}\left(-x^{2} / 2\right)^{m} / m!+1=1-e^{-x^{2} / 2}$, which is the exact solution.
(iii) Here $y_{0}=0$ and $f(x, y)=2 \sqrt{y} / 3$. If we take $y_{0}(x) \equiv y_{0}=0$, then $y_{n}(x)=0, n \geq 1$. Here $y_{n}(x), \forall n$ coincides with the analytical solution $y(x)=0$. The other solution $y(x)=(x / 3)^{2}$ is not reachable from here.

Note: However, if we start with $y_{0}(x)=1$, then

$$
\begin{aligned}
y_{1}(x)=\frac{2}{3} x, \quad y_{2}(x) & =\left(\frac{2}{3}\right)^{5 / 2} x^{3 / 2}, \quad y_{3}(x)=\left(\frac{2}{3}\right)^{9 / 4} \frac{4}{7} x^{7 / 4} \\
y_{4}(x) & =\left(\frac{2}{3}\right)^{17 / 8}\left(\frac{4}{7}\right)^{1 / 2} x^{15 / 8}
\end{aligned}
$$

Clearly, $y_{n}(x)=a_{n} x^{b_{n}}$ where $a_{1}=2 / 3, a_{2}=(2 / 3)^{5 / 2}, a_{3}=(2 / 3)^{9 / 4}(4 / 7), \cdots$ and $b_{n}=\left(2^{n}-\right.$ 1) $/ 2^{n-1}$. The sequence $b_{n} \rightarrow 2$ and a_{n} is a decreasing sequence bounded below. Hence, $y_{n}(x) \rightarrow$ $A x^{2}$. To find we substitute in the integral relation and find

$$
A x^{2}=2 / 3 \sqrt{A} x^{2} / 2 \Longrightarrow A=1 / 3^{2} \Longrightarrow y_{n}(x) \rightarrow(x / 3)^{2}
$$

12. Consider the initial value problem (IVP) $x y^{\prime}-y=0, y\left(x_{0}\right)=y_{0}$. Solve it for different values of x_{0} and y_{0}. Does the result contradict Picard theorem ?

Solution:

We have $x d y-y d x=0$. Dividing by x^{2}, we have $d(y / x)=0$ Integrating we get $y=c x$ for arbitrary c. If $x_{0} \neq 0$, then we have unique solution for any y_{0}. If $x_{0}=0$ and $y_{0}=0$ then initial condition is satisfied for any c and so there are infinite solutions. If $x_{0}=0$ and $y_{0} \neq 0$, there is no solution.
Here $f(x, y)=y / x$ which is not even defined on y-axis. So Picard theorem does not apply there. At other points conditions of Picard theorem is satisfied and also we have unique solution.
13. Solve $y^{\prime}=(y-x)^{2 / 3}+1$. Show that $y=x$ is also a solution. What can be said about the uniqueness of the initial value problem consisting of the above equation with $y\left(x_{0}\right)=y_{0}$, where $\left(x_{0}, y_{0}\right)$ lies on the line $y=x$.

Solution:

Put $u=y-x \Longrightarrow u^{\prime}=u^{2 / 3}$. Solving we get $y=x+[(x+C) / 3]^{3}$. Also $y=x$ is a solution by direct verification. If $y\left(x_{0}\right)=y_{0}$ and $x_{0}=y_{0}$, then $C=-x_{0}$. Thus the solutions $y=x+\left[\left(x-x_{0}\right) / 3\right]^{3}$ and $y=x$ both satisfy the initial conditions $y\left(x_{0}\right)=y_{0}$ with $x_{0}=y_{0}$. Clearly the solution to the IVP is nonunique.
14. Discuss the existence and uniqueness of the solution of the initial value problem

$$
\left(x^{2}-2 x\right) y^{\prime}=2(x-1) y, \quad y\left(x_{0}\right)=y_{0}
$$

Solution:

Here $f(x, y)=2(x-1) y /\left(x^{2}-2 x\right)$ and $\partial f / \partial y=2(x-1) /\left(x^{2}-2 x\right)$. The existence and uniqueness theorem guarantees the existence of unique solution in the vicinity of (x_{0}, y_{0}) where f and $\partial f / \partial y$ are continuous and bounded. Thus, existence of unique solution is guaranteed at all x_{0} for which $x_{0}\left(x_{0}-2\right) \neq 0$. Hence, unique solution exists when $x_{0} \neq 0,2$.

When $x_{0}=0$ or $x_{0}=2$, nothing can be said using the existence and uniqueness theorem. However, since the equation is separable, we can find the general solution to be $y=C x(x-2)$. Using initial condition we get $y_{0}=C x_{0}\left(x_{0}-2\right)$. Clearly the IVP has no solution if $x_{0}\left(x_{0}-2\right)=0$ and $y_{0} \neq 0$. If $x_{0}\left(x_{0}-2\right)=0$ and $y_{0}=0$ then $y=\alpha x(x-2)$ is a solution to the IVP for any real α. Hence, in summary
(i) No solution for $x_{0}=0$ or $x_{0}=2$ and $y_{0} \neq 0$;
(ii) Infinite number of solutions for $x_{0}=0$ or $x_{0}=2$ and $y_{0}=0$;
(iii) Unique solution for $x_{0} \neq 0,2$.
15. (T) Consider the IVP $y^{\prime}=x-y, y(0)=1$. Show that for Euler method, $y_{n}=2(1-h)^{n}-1+n h$ where h is the step size. $\left(x_{n}=n h\right.$ with $\left.x_{0}=0, y_{0}=y(0)=1\right)$. Deduce that if we take $h=1 / n$, then the limit of y_{n} converges to actual value of $y(1)$.

Solution:

The inductive formula of Euler method is

$$
y_{n}=y_{n-1}+h f\left(x_{n-1}, y_{n-1}\right)=y_{n-1}+h\left(x_{n-1}-y_{n-1}\right)=(1-h) y_{n-1}+h^{2}(n-1) .
$$

(Using $x_{n}=n h$.)
We now use induction to prove the required formula for y_{n}. Clearly it is true for $n=0$. Assume the formula is true for n. Then $y_{n+1}=(1-h) y_{n}+h^{2} n=2(1-h)^{n+1}-1+(n+1) h$.
Taking $h=1 / n$, we have $x_{n}=1$. Thus approximate value of $y(1)$ is given by $y_{n}=2(1-1 / n)^{n}$ which converges to $2 e^{-1}$.

Exact solution of the equation is $y=2 e^{-x}-1+x$. So $y(1)=2 e^{-1}$.
16. Use Euler method and step size .1 on the IVP $y^{\prime}=x+y^{2}, y(0)=1$ to calculate the approximate value for the solution $y(x)$ when $x=.1, .2, .3$. Is your answer for $y(.3)$ is higher or lower than the actual value?

Solution:

We have $x_{0}=0, y_{0}=1$. Using the Euler iterative formula with $h=.1$ (see previous exercise), we get $y_{1}=1.1, y_{2}=1.231, y_{3}=1.403$.

Using graphical method, we see that the solution curve through $(0,1)$ is convex. So Euler method approximate value is lower than actual value.
17. Verify that $y=x^{2} \sin x$ and $y=0$ are both solution of the initial value problem (IVP)

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+\left(x^{2}+6\right) y=0, \quad y(0)=y^{\prime}(0)=0 .
$$

Does it contradict uniqueness of solution of IVP?

Solution: It is easy to verify that they satisfies the equation. For second order ode $y^{\prime \prime}+$ $p(x) y^{\prime}+q(x) y=r(x)$, with initial condition $y\left(x_{0}\right)=a, y^{\prime}\left(x_{0}\right)=b$, the existence and uniqueness theorem assets unique solution when p, q, r are continuous on an interval containing x_{0}. Here $p(x)=-4 / x$ and $q(x)=\left(x^{2}+6\right) / 2$ are not continuous at $x=0$.
18. (T) (i)The differential equation of the form $y=x y^{\prime}+f\left(y^{\prime}\right)$ is called a Clairaut equation. Show that the general solution of this equation is the family of straight lines $y=c x+f(c)$. In addition to these show that it has a special solution given by $f^{\prime}(p)=-x$ where $p=y^{\prime}$. This special solution which does not (in general) represent one of the straight lines $y=c x+f(c)$, is a singular solution.
(Hint. Differentiate the given equation w.r.t. x.)
(Recall: A General Solution of an n-th order differential equation is one that involves n arbitrary constants. A singular solution of a differential equation is a solution that is not obtainable by specifying the values of the arbitrary constant in general solution)
(T) (ii) Solve the equation: $y^{\prime 2}-x y+y=0$.

Solution:

(i)The given equation is $y=x p+f(p), \quad p=y^{\prime}$. Differentiating with respect to x, we get $\frac{d p}{d x}\left(x+f^{\prime}(p)\right)=0$. For $\frac{d p}{d x}=0$ implies that $p=$ const $=c_{1}$. Further integrating, we have $y=c_{1} x+c_{2}$. Substituting in the given equation we have $c_{1} x+c_{2}=x c_{1}+f\left(c_{1}\right)$, i.e. $c_{2}=f\left(c_{1}\right)$. Hence the general solution is

$$
y=c_{1} x+c_{2}=c_{1} x+f\left(c_{1}\right) .
$$

(ii) The given equation is $y=x y^{\prime}-y^{\prime 2}$ which is in Clairaut form with $f(p)=-p^{2}$. General solution is the family of st lines $y=m x+m^{2}$. For singular solution, $-2 p=f^{\prime}(p)=-x$. Putting $y^{\prime}=p=x / 2$ in the given equation, we have singular solution $y=x^{2} / 2-x^{2} / 4=x^{2} / 4$.

