ODE: Assignment-4

In this assignment, we will denote:

y' +p@)y +qx)y=r(x), vl ()

' +p@)y +q@)y=0, zel ()

where I C R is an interval and p(z), ¢(x), r(z) are continuous functions on /.
1. (T) Let y; be the solution of the IVP
y" + (22 — 1)y +sin(e”)y =0, y(0) =1,¢/(0) = —1;
and y, be the solution of the IVP
Yy + (2x — 1)y +sin(e”)y =0, y(0) =2,y (0) = —1.

Find the Wronskian of 41, yo. What is the general solution of y"+(2z—1)y'+sin(e”)y = 07
Solution:

We know that if y;, y2 are solutions of (#x), then the Wronskian W (yy,y2)(x) = W(x) =
cexp(— [p(x)dx) = ce***_ From the given initial conditions we have W(0) = 3. So
¢ = 3. Hence W (z) = 3e~%"+%,

Since W (0) # 0, we deduce thaty;, y» are independent solutions. Therefore, the general

solution is given by ciy; + coys.

2. (T) Show that the set of solutions of the linear homogeneous equation (%) is a real vector
space. Also show that the set of solutions of the linear non-homogeneous equation ()
is not a real vector space. If y1(z),y2(z) are any two solutions of (x), obtain conditions

on the constants a and b so that ay; + bys is also its solution.
Solution:

Let S be the set of solutions of the linear homogeneous ODE (**). Clearly S is a subset
of set of twice differentiable functions on I which is a real vector space. Thus it is
sufficient to show that S is subspace of the above vector space of twice differentiable
function. Now 0(x) = 0 satisfies (**) and hence 0 € S. Thus S is nonempty. Also if u, v
both satisfies (**), then au(x)+ v(z) is also a solution of (**). This implies cu+v € S.

Hence S is a subspace, i.e. a vector space.

Now 0(z) = 0 is not a solution of (*), thus zero element does not exist. Hence, the set

of solution of (*) is not a real vector space.

Let y1(z),y2(x) are any two solutions of (x). Then

yi + p(x)yy + q(x)y = r(x), (1)
Yy + p(x)yy + q(x)y2 = r(2). (2)



Multiplying (1) by a and (2) by b and adding, we find

(ay1 + by2)" + p(a)(ays + bys)" + q(z)(ays + byz) = (a + b)r(z).
If ay; + by, is also a solution, then the LHS is r(z) and hence a + b = 1.
. Decide if the statements are true or false. If the statement is true, prove it, if it is false,

give a counter example showing it is false.

(i) If f(z) and g(z) are linearly independent functions on an interval I, then they are

linearly independent on any larger interval containing I.

If f(z) and g(x) are linearly independent functions on an interval I, then they are linearly

independent on any smaller interval contained in I.

(ii) If f(x) and g(x) are linearly dependent functions on an interval I, then they are
linearly dependent on any subinterval of I.

If y1(x) and yo(x) are linearly dependent functions on an interval I, then they are linearly

dependent on any larger interval containing I.

(iii) If y1(x) and ya(x) are linearly independent solution of (%) on an interval I, they

are linearly independent on any interval contained in I.

(iv) If y1(z) and yo(x) are linearly dependent solutions of (**) on an interval I, they are

linearly dependent on any interval contained in I.
Solution:

(i) True, follows from the definition of linear independence. Flase: take f(z) = x? and

g(x) = z|x|. Then f,g linearly independent over [—1, 1] but dependent over [0, 1].
(ii) True, follows from definition.

(iii) True, follows from the fact that, in this case y;,ys is linearly independent on [ iff
W(y1,y2) # 0 on all I.
)

(iv) True, follows from the fact that, in this case yi, - is linearly dependent on [ iff
W(y1,y2) =0 on all [.

. Can 2® be a solution of (xx) on I = [—1,1]? Find two 2nd order linear homogeneous

ODE with 23 as a solution.
Solution:

No. Putting y = 23 in the given equation, we get 6x + p(r)3x? + q(z)z® = 0 for all
z € [—1,1.] Cancelling z, we get 6 + p(x)3z + q(x)x? = 0 for all [-1,1] 3 x # 0. That is
p(x)3 + q(x)r = —6/x for all x € [—1,1.]. We see that LHS is continuous at 0 but RHS
is not continuous at 0. This cant not happen.

Two ODEs with 2 as solution are: zy” = 2y’ and 2?y” = 6y. Note that here p, ¢ are
not continuous at 0.



5. (T) Can zsinz be a solution of a second order linear homogeneous equation with con-

stant coefficients?
Solution:
No, putting zsinz in " 4+ py’ + qy = 0, we get (¢ — 1)xsinz + p(sinx + x cosz) = 0 for
all x € R. Here p, q are constants. This is clearly not possible.

6. (T) Find the largest interval on which a unique solution is guaranteed to exist of the
IVP. (x4 2)y" +zy +cot(z)y =22+ 1, y(2) =11, /'(2)=-2.
Solution:

Comparing with (), we have

x cos(x) 2 +1
The discontinuities of p,q,r are v = —2,0, £m, £27, 37, - - -. The largest interval that

contains xo = 2 but none of the discontinuities is, therefore, (0, ).

7. Without solving determine the largest interval in which the solution is guaranteed to
uniquely exist of the IVP ty” —¢' =t +t, y(1) = 1,%/(1) = 5. Verify your answer by

solving it explicitly.
Solution:

Since p, r are not continuous at 0, the maximum interval of existence and uniqueness of

solution of the given IVP is (0, c0).
Here dependent variable y is missing. Solving it, y(t) = ¢3/3 + Tt* /4 +t*(Int)/2 — 13/12

for which the max interval of validity is (0, 00).

8. Find the differential equation satisfied by each of the following two-parameter families
of plane curves:
(i) y = cos(ax +b) (i) y =ax+2 (iii) y = ae” + bae”
Solution:

For two arbitrary constants, the order of the ODE will be two. Eliminate constants a
and b by differentiating twice.

(i) y = cos(ar +b) = y' = —asin(ax +b), y’" = —a®cos(axr + b) = —a*y. From this
we find

12 "

== (- =y = ()=

— (1-y)y" +yy? =0

(ii)y=ar+b/zx = zy=az’+b = 2y +y=2ar = ¥y +y/x = 2a which on
differentiating again gives y” +v¢'/x —y/2®> =0 = 2% + 2y —y = 0.

(i) y = ae® + bxe® — e Py=a+br = e %y —eTy=>b = e "Y' —2e Y +
e~ %y = 0 which on simplification gives v — 2y +y =0



9. Find general solution of the following differential equations given a known solution y;:

10.

11.

i) (T) z(1 —2)y" +2(1 —22)y —2y =0 y1 = 1/x
(i) (1 —2?)y" — 22y’ + 2y =0 Y=z
Solution:

(i) Here y; = 1/x. Substitute y = wu(z)/z to get (1 — z)u” — 2u’ = 0. Thus, v’ =
1/(1 —2)? and w = 1/(1 — x). Hence, yo = 1/(z(1 — z)) and the general solution is
y=a/x+b/(z(l —x)).

(ii) Here y; = z. Substitute y = xu(z) to get x(1 — 2?)u” = 2(22* — 1)u’. Thus,

woaeRon 2 111
wo ozl —2?) r l+z 1-=x 22(1 — 2?)
Thus,
u’:i+1( ! + ! ):>u:—l+lln((1+x)
2 2\1l+zxz 1—z x 2 11—z
Hence,

x 14+
— 140
V2 +2n(<1—x)

and the general solution is

T 1+
— b -1+ =1 .
Yy =axr+ { +2n((1_x)}

Verify that sinz//x is a solution of 2%y” + zy’ + (22 — 1/4)y = 0 over any interval on

the positive z-axis and hence find its general solution.
Solution:
Verification is straightforward.

Substitute y = u(z) sinz/\/z to get

, sinz , 4 cosr  sinx
Y=z Nk

y  SINT "y g cosr  sinw n sinz cosz Jdsinx
y—ﬁu N e “ _\/E_x3/2+4x5/2 “

This leads to

2

sinzu” +2cosxu’ =0 = u = cosec’r = u = —cotx

Hence, yo = — cosz/+/x and the general solution is y = (asinx + bcosx)/+/.

Solve the following differential equations:
(i) v —4y' +3y=0 (i) " + 2y + (w? + 1)y =0, w is real.

Solution:



12.

13.

(i) Characteristic (or auxiliary) equation: m? —4m +3 =0 = m =1,3.
General sol: y = Ae® + Be3®

(ii) Characteristic equation: m? +2m + (1 +w?) =0 = m = —1 + wi.

Case 1: w=0 = equal roots m = —1, —1 and general sol: y = (A + Bx)e ™

Case 2: w # 0 = complex conjugate roots m = —1 4+ wi and general sol: y =

e *(Asinwz + Bcoswz)

Solve the following initial value problems:

) (T)y" +4y +4y =0 y(0)=1,4'(0) = -1
(i) y" =2y =3y =0 y(0)=1,¢y'(0)=3
Solution:

(i) Assume y = ™" is a solution. Putting in the given equation, we get the characteristic
equation: m? +4m+4 =0 = m = —2,—2. General sol: y = ¢ **(A + Bx). Using

initial conditions:

A=1,B-2A=-1 = B=1 = y=(v+1)e ™

(ii) Characteristic equation: m? —2m —3 = 0 = m = —1,3. General sol: y =
(Ae*” + Be™®). Using initial conditions:

A+B=1,3A-B=3 = A=1,B=0 = y=¢"

Reduce the following second order differential equation to first order differential equation
and hence solve.

() zy" +y =y? (i) (T) yy" +y?+1=0 (iii) y" — 2y cothz =0

Solution:

(i) Dependent variable y absent. Substitute ¥’ = p = y” = dp/dx. Thus zp’ + p = p*.
Solving p = 1/(1 — az) which on integrating again gives y = b — In(1 — az)/a, where a
and b are arbitrary constants.

(ii) Independent variable z is absent in yy” 4+ ¢’ + 1 = 0. Substitute v/ = p = ¢’ =
pdp/dy. Thus

d d 2
PP W) —= I 1+p2y:1na:>1+p2:a—2
) Y

dp 2
pydy+p 1+ p?

From p? = a?/y? — 1, we find

d
vy =+dr = —/a?—y? =+ +0b.

fa? — 42
Both the solutions can be written as (z + b)* + y* = a® where a and b are arbitrary
constants..
(iii) " — 2y cothx = 0. Substitute v/ = p — y” = dp/dz. Thus dp/dx = 2pcothz.
Solving p = asinh® z, which on integrating again gives y = a(sinh 2z — 2z)/4 + b where

a and b are arbitrary constants.



14.

15.

16.

17.

Find the curve y = y(z) which satisfies the ODE ¢” = ¢/ and the line y = x is tangent

at the origin.
Solution:

The given conditions lead to the following problem:
Solve ¢ — ¢/ = 0 with y(0) = 0, 3/(0) = 1. Integrating once gives ¥ — y = a which on
another integration gives y + a = be®. y(0) = 0 gives a = b. y/(0) = 1 gives b = 1 and

hence solution is y = e* — 1.

Are the following functions linearly dependent on the given intervals?

(i) sindx, cosdr (—o0,00) (i)  Inz,Inz® (0,00)
(iii) cos2z, sin®x (0, 00) (iv)(T) 2°, 2%z [-1,1]
Solution:

(i) asindx 4+ bcos4x = 0. For x = 0 we find b = 0 and for z = 7/8 we get a = 0. Hence
they are NOT linearly dependent.

(i) Inz® — 3Inz = 0 for z € (0,00). Hence linearly dependent.

(iii) a cos 22 +bsin®z = 0. For # = 0 we find a = 0 and for x = 7/2 we get b = 0. Hence
they are NOT linearly dependent.

(iv) az® + bz?|z] = 0. For z < 0 we find a —b = 0 and for z > 0 we get a+ b = 0. Hence
a = b =0 and thus they are NOT linearly dependent.

(a) Show that a solution to (**) with z-axis as tangent at any point in I must be
identically zero on I.

(b) (T) Let y1(z), y2(z) be two solutions of (**) with a common zero at any point in I.

Show that v,y are linearly dependent on I.

(c¢) (T) Show that y = z and y = sinx are not a pair solutions of equation (**), where

p(z), q(z) are continuous functions on I = (—o0, 00).
Solution:

(a) Let &(x) be the solution. Since x axis is a tangent, at © = x¢, say, then {(zg) =
¢ (xg) = 0. Clearly y(z) = 0 satisfies (**) and the initial conditions y(zo) = ¢/'(z) = 0.

Since the solution is unique, {(z) =0in Z .

(b) If y1(x), y2(x) have a common zero at x = zg, say, then y;(zo) = ya2(x¢) = 0. Hence,

W (y1,y2) = 0 at © = g and thus y;, y» are linearly dependent.
(¢) 11 = x and y = sinz are LI on 1. So if they were solution of (xx), the wronskian

W (y1,y2) must never be zero. But W (y;,y2) = 0 at = 0, a contradiction.

(a)(T) Let y1(z),y2(x) be two twice continuously differentiable functions on an interval
L.

(i) Show that the Wronskian W (y;,y2) does not vanish anywhere in I if and only if there

exists continuous p(x), ¢(x) on I such that (**) has yi, yo as independent solutions.



18.

(ii) Is it true that if y;,y2 are independent on I then there exists continuous p(x), g(x)
on I such that (**) has y;, y» as independent solutions?

x —x

(b) Construct equations of the form (**) from the following pairs of solutions: e™*, ze
Solution:

(a)(i) Suppose that W (y1,y2) does not vanish anywhere in I. We want to find p(x), ¢(z)
such that

v+ p()yr + q(@)yn =0, i + p(x)ys + g(x)ys = 0. (3)

Solving we get:

p(x) = —(y1ys — v2u1) /WY1, y2) = —%(W(yl,yg))/W(yl,yg)

!

and q(x) = (y1vs — v4yt) /W (y1,y2). They are continuous on I since W(y1,y2) never
zero on 1.

[Note that g(x) can also be written as ¢(z) = —i(yi’ +p(z)y;) ]

Converse follows from the fact Wronskian is never zero for independent solutions of (sx).
(i) Not true. Consider y;(z) = z* and yo(x) = z*|z| on I = [—1,1.] Then they are
independent on I, but they are not solutions of any (**) on I.

(b) Using 8(a): yi(z) = e and yo(z) = ze™®. Hence, W (y1,y2) = e 2* and p(x) = 2.
And ¢(x) = —(e7® —2e7")/e™* = 1. Hence y" + 2y +y = 0.

Alternative: Write y = ay;(x) + bys(z) and eliminate a and b. y = e *(a + bx) —
e’y = a + bzx. Differentiating w.r.t. x twice we find

By using the method of variation of parameters, find the general solution of:
(i) ¥ + 4y = 2 cos® x + 10e” (i) (T) y"+y = zsinz
(iil) v + y = cot*x (iv) 2%y —z(x + 2)y + (z +2)y = 2*, = >0.
[Hint. y = 2 is a solution of the homogeneous part]

Solution:

If y1, yo are independent solutions of the homogeneous part of the ODE

y' +p(@)y +q(z)y =r(z),

then the general solution is y = Ay, + Bys+uy; +vys, where A, B are arbitrary constants

and
TY2

W
(i) y1 = cos2x,ys = sin2z, W (y1,y2) = 2,7(x) = 2cos®x + 10e” = cos 2z + 1 + 10e”.

Now

u=— de, v= | —dx, (W (y1,y2) is the Wronskian)]

cosdxr  cos2x

16 + 1 — €”(sin 2x — 2 cos 2x)

u = —/ygr/Wd:L’:



sindr x sin2x

v—/ylr/de— 16 +Z+ 1 + e¥(2sin 2z + cos 2x)
Thus
_cos2x+xsin2x+1+2$
TS 1 T

General solution: (absorbing first term of y, in the homogeneous solution)

xsin2x+1+2 .
—+2e
4 4

y = Acos2x + Bsin2x +

(i) y1 = cosx,ys = sinx, W(y1,y2) = 1,7(x) = xsinz. Now

2

u:—/ygr/de:—%—f-

rsin2x  cos2x

4 * 8

rcos2x  sin2x

4 T 8

v:/ylr/de: —

Thus

cosx xsinx xlcosx

8 * 4 4
General solution: (absorbing first term of y, in the homogeneous solution)

Yp =

- 2
rsinx  zr°cosx
y= Acosz + Bsinx + R

iii) (ii) y; = cosz,ys = sinx, W (y1,y2) = 1,r(x) = cot? z. Now
(iii) (ii) y Y W (Y1, p2) = 1,

u= —/ygr/W dx = — In(cosecx — cotx) — cosx

v = /ylr/W dr = —cosecx — sinz

Thus

Y, = —2 — cos x In(cosecx — cot x)

General solution:
y = Acosz + Bsinz — 2 — cosx In(cosecx — cot z)

(iv) 11 = x is a solution of the homogeneous part. To find another linearly independent

solution we assume y = xu. This gives
VW—u=0 = v-u=1= u=¢e"-1 = y=zac" —x

Since y; = x, we take ys = xe®. The nonhomogeneous part is written as

T+ 2 T+ 2
yl/_ y/+( 2)
z T

Thus r(z) = z and W (y;,y2) = 2%e®. Now

U= —/ygr/Wdac =—z



and
v = /ylr/de =—e "

Thus y, = —z — 2%
General solution: (absorbing first term of y, in the homogeneous solution)

y = x(A+ Be") — a*.

19. Find the general solution of a 7th-order homogeneous linear differential equation with

constant coefficients whose characteristic polynomial is p(m) = m(m? — 3)*(m?+m+2).
Solution:

m=0,+v3,£V3, —-1/2 £ zﬁ/Z So general solution:

Y = 1+ eV + czreY? 4 eV 4 cse V4 cge 2 cos(VTx [2) + cre T sin(V T /2).

Initial Value Problem vs. Boundary Value Problem

A second-order initial value problem consists of a second-order ordinary differential equation
y'(t) = F(t,y(t),y(t)) and initial conditions y(t9) = vo, ¥'(to) = vy, where to,yo,y; are
numbers.

It might seem that there are more than one ways to present the initial conditions of a
second order equation. Instead of locating both initial conditions y(ty) = yo and y/(to) = ¥},
at the same point ¢y, couldn’t we take them at different points, for examples y(tg) = yo and
y(t1) = yr; or ¥ (to) =y, and ¢/ (t1) = y}? The answer is NO. All the initial conditions in
an initial value problem must be taken at the same point t,. The sets of conditions
above where the values are taken at different points are known as boundary conditions. A
boundary value problem does not have the existence and uniqueness guaranteed.

Example: Every function of the form y = C'sin(t), where C' is a real number satisfies the
boundary value problem y” +y = 0,y(0) = 0, y(7) = 0. Therefore, the problem has infinitely

many solutions, even though p(t) =0, ¢(t) =1, r(t) =0 are all continuous everywhere.



