ODE: Assignment-4

In this assignment, we will denote:

$$
\begin{align*}
& y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x), x \in I \tag{*}\\
& y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad x \in I \quad(* *)
\end{align*}
$$

where $I \subset \mathbb{R}$ is an interval and $p(x), q(x), r(x)$ are continuous functions on I.

1. (T) Let y_{1} be the solution of the IVP

$$
y^{\prime \prime}+(2 x-1) y^{\prime}+\sin \left(e^{x}\right) y=0, \quad y(0)=1, y^{\prime}(0)=-1
$$

and y_{2} be the solution of the IVP

$$
y^{\prime \prime}+(2 x-1) y^{\prime}+\sin \left(e^{x}\right) y=0, \quad y(0)=2, y^{\prime}(0)=-1 .
$$

Find the Wronskian of y_{1}, y_{2}. What is the general solution of $y^{\prime \prime}+(2 x-1) y^{\prime}+\sin \left(e^{x}\right) y=0$?

Solution:

We know that if y_{1}, y_{2} are solutions of $(* *)$, then the Wronskian $W\left(y_{1}, y_{2}\right)(x)=W(x)=$ $c \exp \left(-\int p(x) d x\right)=c e^{-x^{2}+x}$. From the given initial conditions we have $W(0)=3$. So $c=3$. Hence $W(x)=3 e^{-x^{2}+x}$.
Since $W(0) \neq 0$, we deduce that y_{1}, y_{2} are independent solutions. Therefore, the general solution is given by $c_{1} y_{1}+c_{2} y_{2}$.
2. (T) Show that the set of solutions of the linear homogeneous equation $(* *)$ is a real vector space. Also show that the set of solutions of the linear non-homogeneous equation $(*)$ is not a real vector space. If $y_{1}(x), y_{2}(x)$ are any two solutions of $(*)$, obtain conditions on the constants a and b so that $a y_{1}+b y_{2}$ is also its solution.

Solution:

Let S be the set of solutions of the linear homogeneous $\operatorname{ODE}\left({ }^{* *}\right)$. Clearly S is a subset of set of twice differentiable functions on I which is a real vector space. Thus it is sufficient to show that S is subspace of the above vector space of twice differentiable function. Now $\mathbf{0}(x)=0$ satisfies $\left({ }^{* *}\right)$ and hence $\mathbf{0} \in S$. Thus S is nonempty. Also if u, v both satisfies $\left(^{(*)}\right.$), then $\alpha u(x)+v(x)$ is also a solution of $\left({ }^{* *}\right)$. This implies $\alpha u+v \in S$. Hence S is a subspace, i.e. a vector space.

Now $\mathbf{0}(x)=0$ is not a solution of $(*)$, thus zero element does not exist. Hence, the set of solution of $\left({ }^{*}\right)$ is not a real vector space.
Let $y_{1}(x), y_{2}(x)$ are any two solutions of $(*)$. Then

$$
\begin{align*}
y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1} & =r(x) \tag{1}\\
y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2} & =r(x) . \tag{2}
\end{align*}
$$

Multiplying (1) by a and (2) by b and adding, we find

$$
\left(a y_{1}+b y_{2}\right)^{\prime \prime}+p(x)\left(a y_{1}+b y_{2}\right)^{\prime}+q(x)\left(a y_{1}+b y_{2}\right)=(a+b) r(x) .
$$

If $a y_{1}+b y_{2}$ is also a solution, then the LHS is $r(x)$ and hence $a+b=1$.
3. Decide if the statements are true or false. If the statement is true, prove it, if it is false, give a counter example showing it is false.
(i) If $f(x)$ and $g(x)$ are linearly independent functions on an interval I , then they are linearly independent on any larger interval containing I.

If $f(x)$ and $g(x)$ are linearly independent functions on an interval I, then they are linearly independent on any smaller interval contained in I.
(ii) If $f(x)$ and $g(x)$ are linearly dependent functions on an interval I, then they are linearly dependent on any subinterval of I.

If $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent functions on an interval I , then they are linearly dependent on any larger interval containing I.
(iii) If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solution of $(* *)$ on an interval I, they are linearly independent on any interval contained in I.
(iv) If $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent solutions of $(* *)$ on an interval I, they are linearly dependent on any interval contained in I.

Solution:

(i) True, follows from the definition of linear independence. Flase: take $f(x)=x^{2}$ and $g(x)=x|x|$. Then f, g linearly independent over $[-1,1]$ but dependent over $[0,1]$.
(ii) True, follows from definition.
(iii) True, follows from the fact that, in this case y_{1}, y_{2} is linearly independent on I iff $W\left(y_{1}, y_{2}\right) \neq 0$ on all I.
(iv) True, follows from the fact that, in this case y_{1}, y_{2} is linearly dependent on I iff $W\left(y_{1}, y_{2}\right)=0$ on all I.
4. Can x^{3} be a solution of $(* *)$ on $I=[-1,1]$? Find two 2 nd order linear homogeneous ODE with x^{3} as a solution.

Solution:

No. Putting $y=x^{3}$ in the given equation, we get $6 x+p(x) 3 x^{2}+q(x) x^{3}=0$ for all $x \in[-1,1$.$] Cancelling x$, we get $6+p(x) 3 x+q(x) x^{2}=0$ for all $[-1,1] \ni x \neq 0$. That is $p(x) 3+q(x) x=-6 / x$ for all $x \in[-1,1$.$] . We see that LHS is continuous at 0$ but RHS is not continuous at 0 . This cant not happen.

Two ODEs with x^{3} as solution are: $x y^{\prime \prime}=2 y^{\prime}$ and $x^{2} y^{\prime \prime}=6 y$. Note that here p, q are not continuous at 0 .
5. (T) Can $x \sin x$ be a solution of a second order linear homogeneous equation with constant coefficients?

Solution:

No, putting $x \sin x$ in $y^{\prime \prime}+p y^{\prime}+q y=0$, we get $(q-1) x \sin x+p(\sin x+x \cos x)=0$ for all $x \in \mathbb{R}$. Here p, q are constants. This is clearly not possible.
6. (T) Find the largest interval on which a unique solution is guaranteed to exist of the IVP. $(x+2) y^{\prime \prime}+x y^{\prime}+\cot (x) y=x^{2}+1, \quad y(2)=11, \quad y^{\prime}(2)=-2$.

Solution:

Comparing with $(*)$, we have

$$
p(x)=\frac{x}{x+2}, q(x)=\frac{\cos (x)}{(x+2) \sin x}, \quad r(x)=\frac{x^{2}+1}{x+2} .
$$

The discontinuities of p, q, r are $x=-2,0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \cdots$. The largest interval that contains $x_{0}=2$ but none of the discontinuities is, therefore, $(0, \pi)$.
7. Without solving determine the largest interval in which the solution is guaranteed to uniquely exist of the IVP $t y^{\prime \prime}-y^{\prime}=t^{2}+t, \quad y(1)=1, y^{\prime}(1)=5$. Verify your answer by solving it explicitly.

Solution:

Since p, r are not continuous at 0 , the maximum interval of existence and uniqueness of solution of the given IVP is $(0, \infty)$.

Here dependent variable y is missing. Solving it, $y(t)=t^{3} / 3+7 t^{2} / 4+t^{2}(\ln t) / 2-13 / 12$ for which the max interval of validity is $(0, \infty)$.
8. Find the differential equation satisfied by each of the following two-parameter families of plane curves:
(i) $y=\cos (a x+b)$
(ii) $y=a x+\frac{b}{x}$
(iii) $y=a e^{x}+b x e^{x}$

Solution:

For two arbitrary constants, the order of the ODE will be two. Eliminate constants a and b by differentiating twice.
(i) $y=\cos (a x+b) \Longrightarrow y^{\prime}=-a \sin (a x+b), y^{\prime \prime}=-a^{2} \cos (a x+b)=-a^{2} y$. From this we find

$$
\frac{y^{\prime 2}}{a^{2}}+y^{2}=1 \Longrightarrow\left(1-y^{2}\right) a^{2}=y^{\prime 2} \Longrightarrow-\left(1-y^{2}\right) \frac{y^{\prime \prime}}{y}=y^{\prime 2} \Longrightarrow\left(1-y^{2}\right) y^{\prime \prime}+y y^{\prime 2}=0
$$

(ii) $y=a x+b / x \Longrightarrow x y=a x^{2}+b \Longrightarrow x y^{\prime}+y=2 a x \Longrightarrow y^{\prime}+y / x=2 a$ which on differentiating again gives $y^{\prime \prime}+y^{\prime} / x-y / x^{2}=0 \Longrightarrow x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.
(iii) $y=a e^{x}+b x e^{x} \Longrightarrow e^{-x} y=a+b x \Longrightarrow e^{-x} y^{\prime}-e^{-x} y=b \Longrightarrow e^{-x} y^{\prime \prime}-2 e^{-x} y^{\prime}+$ $e^{-x} y=0$ which on simplification gives $y^{\prime \prime}-2 y^{\prime}+y=0$
9. Find general solution of the following differential equations given a known solution y_{1} :
(i) $(\mathbf{T}) x(1-x) y^{\prime \prime}+2(1-2 x) y^{\prime}-2 y=0$ $y_{1}=1 / x$
(ii) $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ $y_{1}=x$

Solution:

(i) Here $y_{1}=1 / x$. Substitute $y=u(x) / x$ to get $(1-x) u^{\prime \prime}-2 u^{\prime}=0$. Thus, $u^{\prime}=$ $1 /(1-x)^{2}$ and $u=1 /(1-x)$. Hence, $y_{2}=1 /(x(1-x))$ and the general solution is $y=a / x+b /(x(1-x))$.
(ii) Here $y_{1}=x$. Substitute $y=x u(x)$ to get $x\left(1-x^{2}\right) u^{\prime \prime}=2\left(2 x^{2}-1\right) u^{\prime}$. Thus,

$$
\frac{u^{\prime \prime}}{u^{\prime}}=\frac{2\left(2 x^{2}-1\right)}{x\left(1-x^{2}\right)}=-\frac{2}{x}-\frac{1}{1+x}+\frac{1}{1-x} \Longrightarrow u^{\prime}=\frac{1}{x^{2}\left(1-x^{2}\right)}
$$

Thus,

$$
u^{\prime}=\frac{1}{x^{2}}+\frac{1}{2}\left(\frac{1}{1+x}+\frac{1}{1-x}\right) \Longrightarrow u=-\frac{1}{x}+\frac{1}{2} \ln \left(\left(\frac{1+x}{1-x}\right)\right.
$$

Hence,

$$
y_{2}=-1+\frac{x}{2} \ln \left(\left(\frac{1+x}{1-x}\right)\right.
$$

and the general solution is

$$
y=a x+b\left\{-1+\frac{x}{2} \ln \left(\left(\frac{1+x}{1-x}\right)\right\} .\right.
$$

10. Verify that $\sin x / \sqrt{x}$ is a solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$ over any interval on the positive x-axis and hence find its general solution.

Solution:

Verification is straightforward.
Substitute $y=u(x) \sin x / \sqrt{x}$ to get

$$
\begin{gathered}
y^{\prime}=\frac{\sin x}{\sqrt{x}} u^{\prime}+\left(\frac{\cos x}{\sqrt{x}}-\frac{\sin x}{2 x^{3 / 2}}\right) u \\
y^{\prime \prime}=\frac{\sin x}{\sqrt{x}} u^{\prime \prime}+2\left(\frac{\cos x}{\sqrt{x}}-\frac{\sin x}{2 x^{3 / 2}}\right) u^{\prime}+\left(-\frac{\sin x}{\sqrt{x}}-\frac{\cos x}{x^{3 / 2}}+\frac{3}{4} \frac{\sin x}{x^{5 / 2}}\right) u
\end{gathered}
$$

This leads to

$$
\sin x u^{\prime \prime}+2 \cos x u^{\prime}=0 \Longrightarrow u^{\prime}=\operatorname{cosec}^{2} x \Longrightarrow u=-\cot x
$$

Hence, $y_{2}=-\cos x / \sqrt{x}$ and the general solution is $y=(a \sin x+b \cos x) / \sqrt{x}$.
11. Solve the following differential equations:
(i) $y^{\prime \prime}-4 y^{\prime}+3 y=0$
(ii) $y^{\prime \prime}+2 y^{\prime}+\left(\omega^{2}+1\right) y=0, \quad \omega$ is real.

Solution:

(i) Characteristic (or auxiliary) equation: $m^{2}-4 m+3=0 \Longrightarrow m=1,3$.

General sol: $y=A e^{x}+B e^{3 x}$
(ii) Characteristic equation: $m^{2}+2 m+\left(1+\omega^{2}\right)=0 \Longrightarrow m=-1 \pm \omega i$.

Case 1: $\omega=0 \Longrightarrow$ equal roots $m=-1,-1$ and general sol: $y=(A+B x) e^{-x}$
Case 2: $\omega \neq 0 \Longrightarrow$ complex conjugate roots $m=-1 \pm \omega i$ and general sol: $y=$ $e^{-x}(A \sin \omega x+B \cos \omega x)$
12. Solve the following initial value problems:
(i) $(\mathbf{T}) y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y(0)=1, y^{\prime}(0)=-1$
(ii) $y^{\prime \prime}-2 y^{\prime}-3 y=0 \quad y(0)=1, y^{\prime}(0)=3$

Solution:

(i) Assume $y=e^{m x}$ is a solution. Putting in the given equation, we get the characteristic equation: $m^{2}+4 m+4=0 \Longrightarrow m=-2,-2$. General sol: $y=e^{-2 x}(A+B x)$. Using initial conditions:

$$
A=1, B-2 A=-1 \Longrightarrow B=1 \Longrightarrow y=(x+1) e^{-2 x}
$$

(ii) Characteristic equation: $m^{2}-2 m-3=0 \Longrightarrow m=-1,3$. General sol: $y=$ $\left(A e^{3 x}+B e^{-x}\right)$. Using initial conditions:

$$
A+B=1,3 A-B=3 \Longrightarrow A=1, B=0 \Longrightarrow y=e^{3 x}
$$

13. Reduce the following second order differential equation to first order differential equation and hence solve.
(i) $x y^{\prime \prime}+y^{\prime}=y^{\prime 2}$
(ii) $(\mathbf{T}) y y^{\prime \prime}+y^{\prime 2}+1=0$
(iii) $y^{\prime \prime}-2 y^{\prime} \operatorname{coth} x=0$

Solution:

(i) Dependent variable y absent. Substitute $y^{\prime}=p \Longrightarrow y^{\prime \prime}=d p / d x$. Thus $x p^{\prime}+p=p^{2}$. Solving $p=1 /(1-a x)$ which on integrating again gives $y=b-\ln (1-a x) / a$, where a and b are arbitrary constants.
(ii) Independent variable x is absent in $y y^{\prime \prime}+y^{\prime 2}+1=0$. Substitute $y^{\prime}=p \Longrightarrow y^{\prime \prime}=$ $p d p / d y$. Thus

$$
p y \frac{d p}{d y}+p^{2}=1 \Longrightarrow \frac{p d p}{1+p^{2}}+\frac{d y}{y}=0 \Longrightarrow \ln \sqrt{1+p^{2}} y=\ln a \Longrightarrow 1+p^{2}=\frac{a^{2}}{y^{2}}
$$

From $p^{2}=a^{2} / y^{2}-1$, we find

$$
\frac{y d y}{\sqrt{a^{2}-y^{2}}}= \pm d x \Longrightarrow-\sqrt{a^{2}-y^{2}}= \pm x+b
$$

Both the solutions can be written as $(x+b)^{2}+y^{2}=a^{2}$ where a and b are arbitrary constants..
(iii) $y^{\prime \prime}-2 y^{\prime} \operatorname{coth} x=0$. Substitute $y^{\prime}=p \Longrightarrow y^{\prime \prime}=d p / d x$. Thus $d p / d x=2 p \operatorname{coth} x$. Solving $p=a \sinh ^{2} x$, which on integrating again gives $y=a(\sinh 2 x-2 x) / 4+b$ where a and b are arbitrary constants.
14. Find the curve $y=y(x)$ which satisfies the ODE $y^{\prime \prime}=y^{\prime}$ and the line $y=x$ is tangent at the origin.

Solution:

The given conditions lead to the following problem:
Solve $y^{\prime \prime}-y^{\prime}=0$ with $y(0)=0, y^{\prime}(0)=1$. Integrating once gives $y^{\prime}-y=a$ which on another integration gives $y+a=b e^{x} . y(0)=0$ gives $a=b . y^{\prime}(0)=1$ gives $b=1$ and hence solution is $y=e^{x}-1$.
15. Are the following functions linearly dependent on the given intervals?
(i) $\sin 4 x, \cos 4 x \quad(-\infty, \infty)$
(ii) $\ln x, \ln x^{3} \quad(0, \infty)$
(iii) $\cos 2 x, \sin ^{2} x \quad(0, \infty)$
(iv)(T) $\quad x^{3}, x^{2}|x| \quad[-1,1]$

Solution:

(i) $a \sin 4 x+b \cos 4 x=0$. For $x=0$ we find $b=0$ and for $x=\pi / 8$ we get $a=0$. Hence they are NOT linearly dependent.
(ii) $\ln x^{3}-3 \ln x=0$ for $x \in(0, \infty)$. Hence linearly dependent.
(iii) $a \cos 2 x+b \sin ^{2} x=0$. For $x=0$ we find $a=0$ and for $x=\pi / 2$ we get $b=0$. Hence they are NOT linearly dependent.
(iv) $a x^{3}+b x^{2}|x|=0$. For $x<0$ we find $a-b=0$ and for $x>0$ we get $a+b=0$. Hence $a=b=0$ and thus they are NOT linearly dependent.
16. (a) Show that a solution to $\left({ }^{* *}\right)$ with x-axis as tangent at any point in I must be identically zero on I.
(b) ($\mathbf{T})$ Let $y_{1}(x), y_{2}(x)$ be two solutions of $\left({ }^{* *}\right)$ with a common zero at any point in I. Show that y_{1}, y_{2} are linearly dependent on I.
(c) (\mathbf{T}) Show that $y=x$ and $y=\sin x$ are not a pair solutions of equation $\left({ }^{* *}\right)$, where $p(x), q(x)$ are continuous functions on $I=(-\infty, \infty)$.

Solution:

(a) Let $\xi(x)$ be the solution. Since x axis is a tangent, at $x=x_{0}$, say, then $\xi\left(x_{0}\right)=$ $\xi^{\prime}\left(x_{0}\right)=0$. Clearly $y(x) \equiv 0$ satisfies $\left({ }^{* *}\right)$ and the initial conditions $y\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)=0$. Since the solution is unique, $\xi(x) \equiv 0$ in \mathcal{I}.
(b) If $y_{1}(x), y_{2}(x)$ have a common zero at $x=x_{0}$, say, then $y_{1}\left(x_{0}\right)=y_{2}\left(x_{0}\right)=0$. Hence, $W\left(y_{1}, y_{2}\right)=0$ at $x=x_{0}$ and thus y_{1}, y_{2} are linearly dependent.
(c) $y_{1}=x$ and $y_{2}=\sin x$ are LI on I. So if they were solution of $(* *)$, the wronskian $W\left(y_{1}, y_{2}\right)$ must never be zero. But $W\left(y_{1}, y_{2}\right)=0$ at $x=0$, a contradiction.
17. (a)(T) Let $y_{1}(x), y_{2}(x)$ be two twice continuously differentiable functions on an interval I.
(i) Show that the Wronskian $W\left(y_{1}, y_{2}\right)$ does not vanish anywhere in I if and only if there exists continuous $p(x), q(x)$ on I such that $\left({ }^{* *}\right)$ has y_{1}, y_{2} as independent solutions.
(ii) Is it true that if y_{1}, y_{2} are independent on I then there exists continuous $p(x), q(x)$ on I such that $\left({ }^{* *}\right)$ has y_{1}, y_{2} as independent solutions?
(b) Construct equations of the form $\left({ }^{* *}\right)$ from the following pairs of solutions: $e^{-x}, x e^{-x}$.

Solution:

(a)(i) Suppose that $W\left(y_{1}, y_{2}\right)$ does not vanish anywhere in I. We want to find $p(x), q(x)$ such that

$$
\begin{equation*}
y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}=0, \quad y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}=0 . \tag{3}
\end{equation*}
$$

Solving we get:

$$
p(x)=-\left(y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}\right) / W\left(y_{1}, y_{2}\right)=-\frac{d}{d x}\left(W\left(y_{1}, y_{2}\right)\right) / W\left(y_{1}, y_{2}\right)
$$

and $q(x)=\left(y_{1}^{\prime} y_{2}^{\prime \prime}-y_{2}^{\prime} y_{1}^{\prime \prime}\right) / W\left(y_{1}, y_{2}\right)$. They are continuous on I since $W\left(y_{1}, y_{2}\right)$ never zero on I.
[Note that $q(x)$ can also be written as $q(x)=-\frac{1}{y_{1}}\left(y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}\right)$.]
Converse follows from the fact Wronskian is never zero for independent solutions of ($* *$).
(ii) Not true. Consider $y_{1}(x)=x^{3}$ and $y_{2}(x)=x^{2}|x|$ on $I=[-1,1$.] Then they are independent on I, but they are not solutions of any $(* *)$ on I.
(b) Using 8(a): $y_{1}(x)=e^{-x}$ and $y_{2}(x)=x e^{-x}$. Hence, $W\left(y_{1}, y_{2}\right)=e^{-2 x}$ and $p(x)=2$. And $q(x)=-\left(e^{-x}-2 e^{-x}\right) / e^{-x}=1$. Hence $y^{\prime \prime}+2 y^{\prime}+y=0$.
Alternative: Write $y=a y_{1}(x)+b y_{2}(x)$ and eliminate a and $b . y=e^{-x}(a+b x) \Longrightarrow$ $e^{x} y=a+b x$. Differentiating w.r.t. x twice we find

$$
e^{x}\left(y^{\prime}+y\right)=b \Longrightarrow e^{x}\left(y^{\prime \prime}+2 y^{\prime}+y\right)=0 \Longrightarrow y^{\prime \prime}+2 y^{\prime}+y=0
$$

18. By using the method of variation of parameters, find the general solution of:
(i) $y^{\prime \prime}+4 y=2 \cos ^{2} x+10 e^{x}$
(ii) ($\mathbf{T}) y^{\prime \prime}+y=x \sin x$
(iii) $y^{\prime \prime}+y=\cot ^{2} x$
(iv) $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=x^{3}, \quad x>0$.
[Hint. $y=x$ is a solution of the homogeneous part]

Solution:

If y_{1}, y_{2} are independent solutions of the homogeneous part of the ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

then the general solution is $y=A y_{1}+B y_{2}+u y_{1}+v y_{2}$, where A, B are arbitrary constants and

$$
u=-\int \frac{r y_{2}}{W} d x, \quad v=\int \frac{r y_{1}}{W} d x, \quad\left[W\left(y_{1}, y_{2}\right) \text { is the Wronskian }\right]
$$

(i) $y_{1}=\cos 2 x, y_{2}=\sin 2 x, W\left(y_{1}, y_{2}\right)=2, r(x)=2 \cos ^{2} x+10 e^{x}=\cos 2 x+1+10 e^{x}$.

Now

$$
u=-\int y_{2} r / W d x=\frac{\cos 4 x}{16}+\frac{\cos 2 x}{4}-e^{x}(\sin 2 x-2 \cos 2 x)
$$

$$
v=\int y_{1} r / W d x=\frac{\sin 4 x}{16}+\frac{x}{4}+\frac{\sin 2 x}{4}+e^{x}(2 \sin 2 x+\cos 2 x)
$$

Thus

$$
y_{p}=\frac{\cos 2 x}{16}+\frac{x \sin 2 x}{4}+\frac{1}{4}+2 e^{x}
$$

General solution: (absorbing first term of y_{p} in the homogeneous solution)

$$
y=A \cos 2 x+B \sin 2 x+\frac{x \sin 2 x}{4}+\frac{1}{4}+2 e^{x}
$$

(ii) $y_{1}=\cos x, y_{2}=\sin x, W\left(y_{1}, y_{2}\right)=1, r(x)=x \sin x$. Now

$$
\begin{gathered}
u=-\int y_{2} r / W d x=-\frac{x^{2}}{4}+\frac{x \sin 2 x}{4}+\frac{\cos 2 x}{8} \\
v=\int y_{1} r / W d x=-\frac{x \cos 2 x}{4}+\frac{\sin 2 x}{8}
\end{gathered}
$$

Thus

$$
y_{p}=\frac{\cos x}{8}+\frac{x \sin x}{4}-\frac{x^{2} \cos x}{4}
$$

General solution: (absorbing first term of y_{p} in the homogeneous solution)

$$
y=A \cos x+B \sin x+\frac{x \sin x}{4}-\frac{x^{2} \cos x}{4}
$$

(iii) (ii) $y_{1}=\cos x, y_{2}=\sin x, W\left(y_{1}, y_{2}\right)=1, r(x)=\cot ^{2} x$. Now

$$
\begin{gathered}
u=-\int y_{2} r / W d x=-\ln (\operatorname{cosec} x-\cot x)-\cos x \\
v=\int y_{1} r / W d x=-\operatorname{cosec} x-\sin x
\end{gathered}
$$

Thus

$$
y_{p}=-2-\cos x \ln (\operatorname{cosec} x-\cot x)
$$

General solution:

$$
y=A \cos x+B \sin x-2-\cos x \ln (\operatorname{cosec} x-\cot x)
$$

(iv) $y_{1}=x$ is a solution of the homogeneous part. To find another linearly independent solution we assume $y=x u$. This gives

$$
u^{\prime \prime}-u^{\prime}=0 \Longrightarrow u^{\prime}-u=1 \Longrightarrow u=e^{x}-1 \Longrightarrow y=x e^{x}-x
$$

Since $y_{1}=x$, we take $y_{2}=x e^{x}$. The nonhomogeneous part is written as

$$
y^{\prime \prime}-\frac{x+2}{x} y^{\prime}+\frac{(x+2)}{x^{2}} y=x .
$$

Thus $r(x)=x$ and $W\left(y_{1}, y_{2}\right)=x^{2} e^{x}$. Now

$$
u=-\int y_{2} r / W d x=-x
$$

and

$$
v=\int y_{1} r / W d x=-e^{-x}
$$

Thus $y_{p}=-x-x^{2}$.
General solution: (absorbing first term of y_{p} in the homogeneous solution)

$$
y=x\left(A+B e^{x}\right)-x^{2} .
$$

19. Find the general solution of a 7th-order homogeneous linear differential equation with constant coefficients whose characteristic polynomial is $p(m)=m\left(m^{2}-3\right)^{2}\left(m^{2}+m+2\right)$.

Solution:

$m=0, \pm \sqrt{3}, \pm \sqrt{3},-1 / 2 \pm i \sqrt{7} / 2$. So general solution:
$y=c_{1}+c_{2} e^{\sqrt{3} x}+c_{3} x e^{\sqrt{3} x}+c_{4} e^{-\sqrt{3} x}+c_{5} e^{-\sqrt{3} x}+c_{6} e^{-x / 2} \cos (\sqrt{7} x / 2)+c_{7} e^{-x / 2} \sin (\sqrt{7} x / 2)$.

Initial Value Problem vs. Boundary Value Problem

A second-order initial value problem consists of a second-order ordinary differential equation $y^{\prime \prime}(t)=F\left(t, y(t), y^{\prime}(t)\right)$ and initial conditions $y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ where $t_{0}, y_{0}, y_{0}^{\prime}$ are numbers.

It might seem that there are more than one ways to present the initial conditions of a second order equation. Instead of locating both initial conditions $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ at the same point t_{0}, couldn't we take them at different points, for examples $y\left(t_{0}\right)=y_{0}$ and $y\left(t_{1}\right)=y_{1}$; or $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ and $y^{\prime}\left(t_{1}\right)=y_{1}^{\prime}$? The answer is NO. All the initial conditions in an initial value problem must be taken at the same point t_{0}. The sets of conditions above where the values are taken at different points are known as boundary conditions. A boundary value problem does not have the existence and uniqueness guaranteed.

Example: Every function of the form $y=C \sin (t)$, where C is a real number satisfies the boundary value problem $y^{\prime \prime}+y=0, y(0)=0, y(\pi)=0$. Therefore, the problem has infinitely many solutions, even though $p(t)=0, \quad q(t)=1, \quad r(t)=0$ are all continuous everywhere.

