ODE: Assignment-4

In this assignment, we will denote:

$$
\begin{align*}
& y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x), x \in I \tag{*}\\
& y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad x \in I \quad(* *)
\end{align*}
$$

where $I \subset \mathbb{R}$ is an interval and $p(x), q(x), r(x)$ are continuous functions on I.

1. (T) Let y_{1} be the solution of the IVP

$$
y^{\prime \prime}+(2 x-1) y^{\prime}+\sin \left(e^{x}\right) y=0, \quad y(0)=1, y^{\prime}(0)=-1 ;
$$

and y_{2} be the solution of the IVP

$$
y^{\prime \prime}+(2 x-1) y^{\prime}+\sin \left(e^{x}\right) y=0, \quad y(0)=2, y^{\prime}(0)=-1 .
$$

Find the Wronskian of y_{1}, y_{2}. What is the general solution of $y^{\prime \prime}+(2 x-1) y^{\prime}+\sin \left(e^{x}\right) y=0$?
2. (T) Show that the set of solutions of the linear homogeneous equation $(* *)$ is a real vector space. Also show that the set of solutions of the linear non-homogeneous equation $(*)$ is not a real vector space. If $y_{1}(x), y_{2}(x)$ are any two solutions of $(*)$, obtain conditions on the constants a and b so that $a y_{1}+b y_{2}$ is also its solution.
3. Decide if the statements are true or false. If the statement is true, prove it, if it is false, give a counter example showing it is false.
(i) If $f(x)$ and $g(x)$ are linearly independent functions on an interval I, then they are linearly independent on any larger interval containing I.

If $f(x)$ and $g(x)$ are linearly independent functions on an interval I, then they are linearly independent on any smaller interval contained in I.
(ii) If $f(x)$ and $g(x)$ are linearly dependent functions on an interval I, then they are linearly dependent on any subinterval of I.

If $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent functions on an interval I, then they are linearly dependent on any larger interval containing I.
(iii) If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solution of $(* *)$ on an interval I , they are linearly independent on any interval contained in I.
(iv) If $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent solutions of $(* *)$ on an interval I, they are linearly dependent on any interval contained in I.
4. Can x^{3} be a solution of $(* *)$ on $I=[-1,1]$? Find two 2 nd order linear homogeneous ODE with x^{3} as a solution.
5. (T) Can $x \sin x$ be a solution of a second order linear homogeneous equation with constant coefficients?
6. (T) Find the largest interval on which a unique solution is guaranteed to exist of the IVP. $(x+2) y^{\prime \prime}+x y^{\prime}+\cot (x) y=x^{2}+1, \quad y(2)=11, \quad y^{\prime}(2)=-2$.
7. Without solving determine the largest interval in which the solution is guaranteed to uniquely exist of the IVP $t y^{\prime \prime}-y^{\prime}=t^{2}+t, \quad y(1)=1, y^{\prime}(1)=5$. Verify your answer by solving it explicitly.
8. Find the differential equation satisfied by each of the following two-parameter families of plane curves:
(i) $y=\cos (a x+b)$
(ii) $y=a x+\frac{b}{x}$
(iii) $y=a e^{x}+b x e^{x}$
9. Find general solution of the following differential equations given a known solution y_{1} :
(i) $(\mathbf{T}) x(1-x) y^{\prime \prime}+2(1-2 x) y^{\prime}-2 y=0 \quad y_{1}=1 / x$
(ii) $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \quad y_{1}=x$
10. Verify that $\sin x / \sqrt{x}$ is a solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$ over any interval on the positive x-axis and hence find its general solution.
11. Solve the following differential equations:
(i) $y^{\prime \prime}-4 y^{\prime}+3 y=0$
(ii) $y^{\prime \prime}+2 y^{\prime}+\left(\omega^{2}+1\right) y=0, \quad \omega$ is real.
12. Solve the following initial value problems:
(i) $(\mathbf{T}) y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y(0)=1, y^{\prime}(0)=-1$
(ii) $y^{\prime \prime}-2 y^{\prime}-3 y=0 \quad y(0)=1, y^{\prime}(0)=3$
13. Reduce the following second order differential equation to first order differential equation and hence solve.
(i) $x y^{\prime \prime}+y^{\prime}=y^{\prime 2}$
(ii) $(\mathbf{T}) y y^{\prime \prime}+y^{\prime 2}+1=0$
(iii) $y^{\prime \prime}-2 y^{\prime} \operatorname{coth} x=0$
14. Find the curve $y=y(x)$ which satisfies the ODE $y^{\prime \prime}=y^{\prime}$ and the line $y=x$ is tangent at the origin.
15. Are the following functions linearly dependent on the given intervals?
(i) $\sin 4 x, \cos 4 x \quad(-\infty, \infty)$
(ii) $\quad \ln x, \ln x^{3} \quad(0, \infty)$
(iii) $\cos 2 x, \sin ^{2} x \quad(0, \infty) \quad$ (iv)(T) $\quad x^{3}, x^{2}|x| \quad[-1,1]$
16. (a) Show that a solution to $\left({ }^{* *}\right)$ with x-axis as tangent at any point in I must be identically zero on I.
(b) ($\mathbf{T})$ Let $y_{1}(x), y_{2}(x)$ be two solutions of $\left({ }^{* *}\right)$ with a common zero at any point in I. Show that y_{1}, y_{2} are linearly dependent on I.
(c) (\mathbf{T}) Show that $y=x$ and $y=\sin x$ are not a pair solutions of equation $\left({ }^{* *}\right)$, where $p(x), q(x)$ are continuous functions on $I=(-\infty, \infty)$.
17. (a)(T) Let $y_{1}(x), y_{2}(x)$ be two twice continuously differentiable functions on an interval I.
(i) Show that the Wronskian $W\left(y_{1}, y_{2}\right)$ does not vanish anywhere in I if and only if there exists continuous $p(x), q(x)$ on I such that $\left({ }^{* *}\right)$ has y_{1}, y_{2} as independent solutions.
(ii) Is it true that if y_{1}, y_{2} are independent on I then there exists continuous $p(x), q(x)$ on I such that $\left({ }^{* *}\right)$ has y_{1}, y_{2} as independent solutions?
(b) Construct equations of the form (**) from the following pairs of solutions: $e^{-x}, x e^{-x}$.
18. By using the method of variation of parameters, find the general solution of:
(i) $y^{\prime \prime}+4 y=2 \cos ^{2} x+10 e^{x}$
(ii) ($\mathbf{T}) y^{\prime \prime}+y=x \sin x$
(iii) $y^{\prime \prime}+y=\cot ^{2} x$
(iv) $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=x^{3}, \quad x>0$.
[Hint. $y=x$ is a solution of the homogeneous part]
19. Find the general solution of a 7th-order homogeneous linear differential equation with constant coefficients whose characteristic polynomial is $p(m)=m\left(m^{2}-3\right)^{2}\left(m^{2}+m+2\right)$.

Initial Value Problem vs. Boundary Value Problem

A second-order initial value problem consists of a second-order ordinary differential equation $y^{\prime \prime}(t)=F\left(t, y(t), y^{\prime}(t)\right)$ and initial conditions $y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ where $t_{0}, y_{0}, y_{0}^{\prime}$ are numbers.

It might seem that there are more than one ways to present the initial conditions of a second order equation. Instead of locating both initial conditions $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ at the same point t_{0}, couldn't we take them at different points, for examples $y\left(t_{0}\right)=y_{0}$ and $y\left(t_{1}\right)=y_{1}$; or $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ and $y^{\prime}\left(t_{1}\right)=y_{1}^{\prime}$? The answer is NO. All the initial conditions in an initial value problem must be taken at the same point t_{0}. The sets of conditions above where the values are taken at different points are known as boundary conditions. A boundary value problem does not have the existence and uniqueness guaranteed.

Example: Every function of the form $y=C \sin (t)$, where C is a real number satisfies the boundary value problem $y^{\prime \prime}+y=0, y(0)=0, y(\pi)=0$. Therefore, the problem has infinitely many solutions, even though $p(t)=0, \quad q(t)=1, \quad r(t)=0$ are all continuous everywhere.

