ODE: Assignment-5

(For calculations of Particular Integrals by operator method, see Simmons books, page 161,

section 23 of the chapter Second order linear equations.)

1. Solve: (i) z%y” +2zy — 12y =0 (ii)(T) 2?y” + 52y + 13y =0 (iil) 2%y" — 2y +y =0

2 dy

[Recall: The ODE of the form x? T2 + ar + by = 0, where a,b are constants, is
x x

called the Cauchy-Euler equation. Under the transformation = e’ (when z > 0) for
2

d d
the independent variable, the above reduces to d—:;j + (a — 1)d—3t/ + by = 0, which is an
equation with constant coefficients. |

Solution:

(i) Using the substitution x = €, the given equation reduces to

d*u d
dtgdeth Ru=0 = m*+m—12=0 = m = —4,3 = u(t) = Ae "4+ Be* = y(e).
The general solution is thus
A
y(x) = o + B2

(ii) Using the substitution x = €', the given equation reduces to,

&2 d
G A 130 =0 = m244dm+13=0 —> m = —2+ 3i.
FTERRET

Thus

u(t) = e *(Acos 3t + Bsin 3t) = y(e").

The general solution is

y(x) = = (A cos(3Inz) + Bsin(31Inz)).

(iii) Using the substitution z = €*, the given equation reduces to

2
%—2%+u_0 — m?—2m+1=0 = m=1,1 = u(t) =e'(A+Bt) = y(e")

The general solution is thus
y(x) =e"(A+ Blnz).

2. (Higher order Cauchy-Euler equations) Let us denote D = = and D= Where x = e
Show that
rD =D, 2°D*=D(D 1), 2°D*=D(D—1)(D —2).

Hence conclude that (22D +az?D*+bxD+c)y = 0, = > 0 is transformed into constant
coefficients ODE [D(D — 1)(D — 2) + aD(D — 1) + bD + cJy = 0 by the substitution

x = el



Solution:

Given z = €', so & = ¢' = z. Now, by chain rule, £ = 44 — =14 Thyg zD =
D. Differentiating this with respect to z, we have 2D? + D = D*% = D! —
2D’ 4 2D =D, = 22D*=D? D =D(D —1).

Differentiating 22D? = D? — D with respect to x, we have 22D? + 2z D? = [D? — D?e !,

= *D*=D3-D*-2D(D—-1)=D(D—1)(D - 2).
. Find a particular solution of each of the following equations by operator methods and
hence find its general solution:
(i) ¥ + 4y = 2 cos® x + 10e” (ii)(T) v +y =sinz + (1 + 2%)e”
(T) (iil) v —y = e “(sinz + cosz) (iv) y" — 3y’ —y + 3y = z%e”
Solution:

(i) Characteristic equation m? +4 = 0 = m = £2i. Hence homogeneous solution
yn = Acos2x + Bsin2z. Now r(x) = 2cos® x + 10e” = cos 2x + 1+ 10e*. Let D = d/dx

and y, be the particular solution. Then

1 1
1= 0z — 1/4,
D214 D214° /
10e* = 10 T _ 9T,
D244 ¢ 2+4° ~ €
1 217 1 21 1 217 21 -
1T — 1xr — 1r — 1xr 4 .
Drra’ tapt Ty /A

Taking real part

D2 g o8 20 = wsin2z/4.

Adding, we get the particular solution as

rsin2x 1 v

Thus the general solution is

xsin2x+1+2x
— + 2e”.
4 4

y = Acos2x + Bsin2x +

(i) Characteristic equation m* + 1 = 0 = m = +i. Hence homogeneous solution
y, = Acosz + Bsinz. Now r(z) = sinz + (1 + 2%)e*. Let D = d/dx and y, be the

particular solution. Then

1 . 1 . 1 .
W@” = xﬁe” = x%e” = %(cosx +isinx).
Taking imaginary part
1 ) T CoST
siny = — .




1 1

1
ot T)e =e

T 2
= 1
¢ D2+2D+2<x +1)

! (:v2+1)—?(1—D—D2/2+(D+D2/2)2+-~)(9c2+1)

e
T 21+ D+ D)2

= 65(1—D—D2/2+D2/2+- c)(2P1) = %(1—D+D2/2+- ) (22 41) = %(1”2_%“)

Thus the general solution is

2

y= Acosx + Bsinz — a;c;)sx + (1 —r+ %) e’
(iii) Characteristic equation m*> —1 = 0 = m = +1. Hence homogeneous solution
yn = Ae*+ Be *. Now r(x) = e *(sinx +cosx). Let D = d/dx and y, be the particular

solution.

—T T —x

1 ‘ e e e Te e [ L9 +,< . 9 >]
e e = = = — COS & sinz +i(sinxz — 2cosx)|.
D?2 -1 (i—1)2—1 -2t —1 5

T

Then the particular solution is obtained by adding the real and imaginary parts:

e "(cosx — 3sinx)
5)

Yp() =
Thus the general solution is

e *(cosx — 3sinx)

5

y=Ae" + Be " +

(iv) Characteristic equation m3 — 3m? —m +3 =0 = m = —1,1,3. Hence homoge-
neous solution y;, = Ae™* + Be® + Ce’*. Now r(z) = 2?¢”. Let D = d/dz and y, be the

particular solution. Then

1 2 x 1 2 x T 1 2
r e = re =€ —==x
D5 —3D°—D+3 (D—17 —4(D - 1) D% — 4D
1 9 1 9 1 5 1 e’ ¥ T
= ¢ - 1+ D?/4 - =Sy
“pa-pyn” ¢ Tpt /AT = pE ) = -7 (G )

So the particular integral is

Thus the general solution is

3
y = Ae % 4+ Be® + Ce3® — ¢” (§+x—)



4. Solve y" + vy — 2y = e”.

Solution: Characteristic equation of the homogeneous part is: m?> +m —2 =0, m =

1, —2. Solution for the homogeneous part: c;e® + coe™2%.

Particular integral:

T

T
1 . 1 . xe xe

D2+D—2° " "2Dp+1° T (@1+1) 3

General solution:
x —2x re®
cie” + coe + —.
3
5. Solve by using operator method (D? + 9)y = sin 2x cos z.
Solution:

Characteristic equation of the homogeneous part is: m? +9 = 0, m = £3i. Solution for

the homogeneous part: c¢; cos 3z + ¢ sin 3.

Particular integral:

1
719 sin 2x cosx = m(sin 3z +sinz).
Now ]
D2—+96m =e"/(i* +9) = (cosx + isinz)/8.
Taking the imaginary part,
1 (sinz) inz/16
————(sinz) = sinxz/16.
2(D?+9)
Now .y
1 . 1T
D2—+963” = J;gi = (x cos 3z + itz sin 3x) /61.
Taking the imaginary part,
o (in32) = —(w cos3r) /12
———(sin3z) = —(z cos 3z)/12.
2(D? + 9)

General solution:
¢1 €08 3% + cosin3x + sinx /16 — (z cos 3x)/12.

6. Find a particular integral by operator method: D? — 6D 4+ 9 = 1 + x + 22.

Solution:

1 1
Pl=— -1 2 _ 1 2
Dr_6D+o TV o+ —6nyo) T




= [1 = (D? = 6D)/9+ (D ~ 6D) /81— - ](1 + 7 + 7).

1
:5[1+2D/3+D2/3—|—---](1+x—|—x2):(1+x+x2+2/3+4x/3+2/3)

_ 3(7/3 + 723+ 7).
7. Find P.I: ¢y’ + 9y = x cos .
Solution:
Consider
1 ir _ v 1 i 1 iz 1
D219 T Drir+9 " D2v2D+8 ° 8(1+D2/S+iDj4)"

1 1

Taking the real part:

1 rcosx sinw
D2—+9x CoST = 3 + 39
8. (T) Solve z%y" — 2xy’ — 4y = 2*> + 2logx, x> 0.
Solution:
Apply the transformation = = e the equation reduces to y” — 3y — 4 = €% + 2t.
—t

Solution of the homogeneous part c;e® + coe

Particular integral: gr—5—(e* +2t) = —* /6 + mrp—2t = —ge* — 5(t — 3/4).

. ! 1 2 -1
DT 3D 12 " Tii D sy - ol H(P/AmSD g it = = (t=3/4).

Hence the general solution is:

1 1 1
y = cre* + cpe” t—ge 2(t—3/4)—01x —I—CQ/x—éx ——(1nx—3/4)

9. (T) (Higher order variation of parameter) Consider the n-th order linear equation
")—i—Zaz Y™ + a1 (@)y" Y+ ag(2)y = r(z).

Assume that yq, - - - , v, are n-independent solutions of the associated homogeneous equa-

tion. Prove that a particular integral of the given ODE is

R
= iyi wh P =
E V;Y; where v; W

Here W is the wronskian of ¥, --- ,y, and R; is the determinant obtained by replacing
i-th column of W by [0,0,---,0,r(x)].



10.

Solution:

Let

Differentiating y, = > viy; + > viy;. Assume ) vjy; = 0 then

Yp= D ViY== ==~ (2).

Differentiating this y, = > vjy; + viy;. Assuming Y vjy; = 0 we have

Proceeding similarly, we get

if Zvéyi(n_m = 0.

=3yt Y e - - — - - - (n+1).
Then

n i n—1
y + Y aix)yl) = oY,
1
Hence y, is a solution of the given ODE if

S, S =0, St =0, Sl 05 = o)

Solution such system of linear equation is given by v, = % where W is the wronskian
of y1,---,y, and R; is the determinant obtained by replacing i-th column of W by
[0,0,---,0,r(x)].

(i) Let y1 (), yo(2) are two linearly independent solutions of y”+p(z)y'+¢(x)y = 0. Show
that ¢(z) = ayi(z) + Py=(z) and ¥(x) = yy1(x) + dy2(x) are two linearly independent
solutions if and only if ad # (.

(ii) Show that the zeros of the functions asinz + bcosz and c¢sinz + d cos z are distinct

and occur alternately whenever ad — bc # 0.
Solution:

(i) We have W(p,v) = (ad — Bv)W (y1,y2). Since y;,y2 are fundamental solutions,

Wy, y2) # 0. If ad # B, then W(p,v) # 0. Conversely if W(¢p,1) # 0, then
ad # By

(ii) We know sin z, cos x are independent solutions of y” +y = 0. So by part (i) asinx +
bcosx and csinx + dcosx are independent solutions whenever ad — bc # 0. Hence the

result follows from Sturm Separation theorem ( Simmons, page 190, Theorem A).



11.

12.

13.

14.

(T) Show that any nontrivial solution u(x) of u” + ¢(z)u = 0, ¢(x) < 0 for all z, has at

most one zero.
Solution:

Consider the equation z” = 0. Then z = 1 is a solution of the equation. By Strum
comparison theorem, between two zeros of u(z) there must be at least one zero of z(z).

But z = 1 has no zero. Hence u(x) can have at most one zero.
Let u(z) be any nontrivial solution of u” 4 [1 + ¢(z)]u = 0, where g(z) > 0. Show that
u(z) has infinitely many zeros.
Solution:
Consider
v+ v =0, u+ (1+g(z)u=0

Now v = sinz is a nontrivial solution of v” +v = 0. Since 1 + ¢(z) > 1, by Strum
comparison theorem, u must vanish between two zeros of sin x. Since, sin x has infinitely

many zeros, u also has infinitely may zeros.

Let u(z) be any nontrivial solution of u” + g(z)u = 0 on a closed interval [a,b]. Show
that u(z) has at most a finite number of zeros in [a, b].

Solution:

Suppose, on the contrary, u(z) has infinite number of zeros in [a, b]. It follows that there
exists o € [a,b] and a sequence of zeros x, # xy such that x, — . Since u(z) is

continuous and differentiable at xy, we have

u(zo) = lim w(z,) =0, W (z0) = lim u(@n) — u(zo)
EnTrEo Tn—rT0 Ty — To

=0

By uniqueness theorem, v = 0 which contradicts the fact that u is nontrivial.

(T) Let J, be any non-trivial solution of the Bessel equation

o2y +ay + (2 —pPy =0, z>0.

Show that J, has infinitely many positive zeros.
Solution:

The normal form of Bessel equation is

1/4 — p?
" o
Given p > 0, we can choose z large enough such that 1—1—1/‘;"—?’2 > 1/4 for all z € (xg, 0).

Compare .J, with sin(z/2) which is solution of v”+ v = 0 in (29, o). Clearly sin(z/2) has
infinitely many zeros in (x, 00). By Sturm comparison theorem, between two consecutive

zeros of sin(x/2) there is a zero of J,. Hence J, has infinitely many zero in (xg, 00).



15.

16.

17.

18.

(T) Consider u” + g(z)u = 0 on an interval I = (0,00) with g(x) > m? for all t € I.
Show any non trivial solution u(z) has infinitely many zeros and distance between two

consecutive zeros is at most mw/m.

Solution: Compare u(z) with sinmx which is a solution of v + m?v = 0. By Sturm
comparison theorem, between two consecutive zeros of v(x) = sin(max) there is a zero of

u(z). Hence u(x) has infinitely many zero in (xg, 00).

Let u(a) = 0. We will show that u(z) has a zero in (a,a + 7/m]. Consider v(z) =
sin(max —ma) which is a solution of v” +m?v = 0. Clearly v(a) = v(a+7/m) = 0. Hence
by Sturm comparison theorem, there exists at least one zero of u(z) in (a,a + 7/m).

Hence distance between two consecutive zeros of u(x) is at most m/m.

Consider u” + q(xz)u = 0 on an interval I = (0,00) with g(z) < m? for all t € I. Show
that distance between two consecutive zeros is at least w/m.

Solution:

Suppose u(a) = 0 and u(b) be two consecutive zeros. Consider v(x) = sin(mz — ma)
which is a solution of v” + m?v = 0. By Sturm comparison theorem, there exists a zero
of v(z) in (a,b). But we know that v(a) = 0 and next zero of v is at a + m/m. So
b>a+m/m.

(T) Let J, be any non-trivial solution of the Bessel equation

o2y +ay + (2 —pPy =0, z>0.

Show that (i) If 0 < p < 1/2, then every interval of length 7 has at least contains at
least one zero of J,.

(ii) If p = 1/2 then distance between consecutive zeros of .J, is exactly .

(iii) If p > 1/2 then every interval of length 7 contains at most one zero of J,.
Solution: The normal form of Bessel equation is

1/4 — p?
i s

"
U +( 2

Ju = 0.

The zeros of J, and u(x) are same.

(i)Apply exercise 15 with m = 1.

(ii) Clear from normal form.

(iii) Apply exercise 16 with m = 1.

Let y(x) be a non-trivial solution of y” + q(x)y = 0. Prove that if ¢(x) > k/x* for some

k > 1/4 then y has infinitely many positive zeros. If ¢(z) < ;5 then y has only finitely

many positive zeros.

Solution:



Consider the Cauchy-Euler equation y” + % = 0. With z = ¢, it transforms into
y" — ' + ky = 0. So characteristic equation m? —m +k = 0. So 1 — 4k = 0 implies two
equal real roots and so the solution has finitely many zeros. If 1 — 4k < 0 then complex
conjugate roots and solution look like 2™ sin(fx) and it has infinitely many zeros. Rest

follows from Sturm comparison theorem.



