ODE: Assignment-5

(For calculations of Particular Integrals by operator method, see Simmons books, page 161, section 23 of the chapter Second order linear equations.)

1. Solve: (i) $x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0$
(ii)(T) $x^{2} y^{\prime \prime}+5 x y^{\prime}+13 y=0$
(iii) $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$
[Recall: The ODE of the form $x^{2} \frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0$, where a, b are constants, is called the Cauchy-Euler equation. Under the transformation $x=e^{t}$ (when $x>0$) for the independent variable, the above reduces to $\frac{d^{2} y}{d t^{2}}+(a-1) \frac{d y}{d t}+b y=0$, which is an equation with constant coefficients.]

Solution:

(i) Using the substitution $x=e^{t}$, the given equation reduces to
$\frac{d^{2} u}{d t^{2}}+\frac{d u}{d t}-12 u=0 \Longrightarrow m^{2}+m-12=0 \Longrightarrow m=-4,3 \Longrightarrow u(t)=A e^{-4 t}+B e^{3 t}=y\left(e^{t}\right)$.
The general solution is thus

$$
y(x)=\frac{A}{x^{4}}+B x^{3} .
$$

(ii) Using the substitution $x=e^{t}$, the given equation reduces to,

$$
\frac{d^{2} u}{d t^{2}}+4 \frac{d u}{d t}+13 u=0 \Longrightarrow m^{2}+4 m+13=0 \Longrightarrow m=-2 \pm 3 i
$$

Thus

$$
u(t)=e^{-2 t}(A \cos 3 t+B \sin 3 t)=y\left(e^{t}\right) .
$$

The general solution is

$$
y(x)=\frac{1}{x^{2}}(A \cos (3 \ln x)+B \sin (3 \ln x)) .
$$

(iii) Using the substitution $x=e^{t}$, the given equation reduces to
$\frac{d^{2} u}{d t^{2}}-2 \frac{d u}{d t}+u=0 \Longrightarrow m^{2}-2 m+1=0 \Longrightarrow m=1,1 \Longrightarrow u(t)=e^{t}(A+B t)=y\left(e^{t}\right)$
The general solution is thus

$$
y(x)=e^{x}(A+B \ln x) .
$$

2. (Higher order Cauchy-Euler equations) Let us denote $D=\frac{d}{d x}$ and $\mathcal{D}=\frac{d}{d t}$ where $x=e^{t}$.

Show that

$$
x D=\mathcal{D}, \quad x^{2} D^{2}=\mathcal{D}(\mathcal{D}-1), \quad x^{3} D^{3}=\mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2) .
$$

Hence conclude that $\left(x^{3} D+a x^{2} D^{2}+b x D+c\right) y=0, x>0$ is transformed into constant coefficients ODE $[\mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2)+a \mathcal{D}(\mathcal{D}-1)+b \mathcal{D}+c] y=0$ by the substitution $x=e^{t}$.

Solution:

Given $x=e^{t}$, so $\frac{d x}{d t}=e^{t}=x$. Now, by chain rule, $\frac{d}{d x}=\frac{d}{d t} \frac{d t}{d x}=e^{-t} \frac{d}{d t}$. Thus $x D=$ \mathcal{D}. Differentiating this with respect to x, we have $x D^{2}+D=\mathcal{D}^{2} \frac{d t}{d x}=\mathcal{D}^{2} e^{-t}, \Longrightarrow$ $x^{2} D^{2}+x D=\mathcal{D}^{2}, \Longrightarrow x^{2} D^{2}=\mathcal{D}^{2}-\mathcal{D}=\mathcal{D}(\mathcal{D}-1)$.

Differentiating $x^{2} D^{2}=\mathcal{D}^{2}-\mathcal{D}$ with respect to x, we have $x^{2} D^{3}+2 x D^{2}=\left[\mathcal{D}^{3}-\mathcal{D}^{2}\right] e^{-t}$, $\Longrightarrow x^{3} D^{3}=\mathcal{D}^{3}-\mathcal{D}^{2}-2 \mathcal{D}(\mathcal{D}-1)=\mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2)$.
3. Find a particular solution of each of the following equations by operator methods and hence find its general solution:
(i) $y^{\prime \prime}+4 y=2 \cos ^{2} x+10 e^{x}$
(ii)($\mathbf{T}) y^{\prime \prime}+y=\sin x+\left(1+x^{2}\right) e^{x}$
(T) (iii) $y^{\prime \prime}-y=e^{-x}(\sin x+\cos x)$
(iv) $y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2} e^{x}$

Solution:

(i) Characteristic equation $m^{2}+4=0 \Longrightarrow m= \pm 2 i$. Hence homogeneous solution $y_{h}=A \cos 2 x+B \sin 2 x$. Now $r(x)=2 \cos ^{2} x+10 e^{x}=\cos 2 x+1+10 e^{x}$. Let $D \equiv d / d x$ and y_{p} be the particular solution. Then

$$
\begin{gathered}
\frac{1}{D^{2}+4} 1=\frac{1}{D^{2}+4} e^{0 x}=1 / 4 . \\
\frac{1}{D^{2}+4} 10 e^{x}=10 \frac{1}{1^{2}+4} e^{x}=2 e^{x} . \\
\frac{1}{D^{2}+4} e^{2 i x}=x \frac{1}{2 D} e^{2 i x}=x \frac{1}{2.2 i} e^{2 i x}=x e^{2 i x} / 4 i .
\end{gathered}
$$

Taking real part

$$
\frac{1}{D^{2}+4} \cos 2 x=x \sin 2 x / 4 .
$$

Adding, we get the particular solution as

$$
y_{p}=\frac{x \sin 2 x}{4}+\frac{1}{4}+2 e^{x} .
$$

Thus the general solution is

$$
y=A \cos 2 x+B \sin 2 x+\frac{x \sin 2 x}{4}+\frac{1}{4}+2 e^{x} .
$$

(ii) Characteristic equation $m^{2}+1=0 \Longrightarrow m= \pm i$. Hence homogeneous solution $y_{h}=A \cos x+B \sin x$. Now $r(x)=\sin x+\left(1+x^{2}\right) e^{x}$. Let $D \equiv d / d x$ and y_{p} be the particular solution. Then

$$
\frac{1}{1+D^{2}} e^{i x}=x \frac{1}{2 D} e^{i x}=x \frac{1}{2 i} e^{i x}=\frac{x}{2 i}(\cos x+i \sin x) .
$$

Taking imaginary part

$$
\frac{1}{1+D^{2}} \sin x=-\frac{x \cos x}{2} .
$$

$$
\begin{gathered}
\frac{1}{1+D^{2}}\left(1+x^{2}\right) e^{x}=e^{x} \frac{1}{(D+1)^{2}+1}\left(1+x^{2}\right)=e^{x} \frac{1}{D^{2}+2 D+2}\left(x^{2}+1\right) \\
=\frac{e^{x}}{2} \frac{1}{1+D+D^{2} / 2}\left(x^{2}+1\right)=\frac{e^{x}}{2}\left(1-D-D^{2} / 2+\left(D+D^{2} / 2\right)^{2}+\cdots\right)\left(x^{2}+1\right) \\
=\frac{e^{x}}{2}\left(1-D-D^{2} / 2+D^{2} / 2+\cdots\right)\left(x^{2}+1\right)=\frac{e^{x}}{2}\left(1-D+D^{2} / 2+\cdots\right)\left(x^{2}+1\right)=\frac{e^{x}}{2}\left(1+x^{2}-2 x+1\right)
\end{gathered}
$$

Thus the general solution is

$$
y=A \cos x+B \sin x-\frac{x \cos x}{2}+\left(1-x+\frac{x^{2}}{2}\right) e^{x}
$$

(iii) Characteristic equation $m^{2}-1=0 \Longrightarrow m= \pm 1$. Hence homogeneous solution $y_{h}=A e^{x}+B e^{-x}$. Now $r(x)=e^{-x}(\sin x+\cos x)$. Let $D \equiv d / d x$ and y_{p} be the particular solution.

$$
\frac{1}{D^{2}-1} e^{-x} e^{i x}=\frac{e^{-x} e^{i x}}{(i-1)^{2}-1}=\frac{e^{-x} e^{i x}}{-2 i-1}=-\frac{e^{-x}}{5}[\cos x+2 \sin x+i(\sin x-2 \cos x)] .
$$

Then the particular solution is obtained by adding the real and imaginary parts:

$$
y_{p}(x)=\frac{e^{-x}(\cos x-3 \sin x)}{5}
$$

Thus the general solution is

$$
y=A e^{x}+B e^{-x}+\frac{e^{-x}(\cos x-3 \sin x)}{5}
$$

(iv) Characteristic equation $m^{3}-3 m^{2}-m+3=0 \Longrightarrow m=-1,1,3$. Hence homogeneous solution $y_{h}=A e^{-x}+B e^{x}+C e^{3 x}$. Now $r(x)=x^{2} e^{x}$. Let $D \equiv d / d x$ and y_{p} be the particular solution. Then

$$
\begin{gathered}
\frac{1}{D^{3}-3 D^{2}-D+3} x^{2} e^{x}=\frac{1}{(D-1)^{3}-4(D-1)} x^{2} e^{x}=e^{x} \frac{1}{D^{3}-4 D} x^{2} \\
=e^{x} \frac{1}{-4 D\left(1-D^{2} / 4\right)} x^{2}=e^{x} \frac{1}{-4 D}\left(1+D^{2} / 4+\cdots\right) x^{2}=e^{x} \frac{1}{-4 D}\left(x^{2}+\frac{1}{2}\right)=-\frac{e^{x}}{4}\left(\frac{x^{3}}{3}+\frac{x}{2}\right) .
\end{gathered}
$$

So the particular integral is

$$
y_{p}(x)=-e^{x}\left(\frac{x}{8}+\frac{x^{3}}{12}\right)
$$

Thus the general solution is

$$
y=A e^{-x}+B e^{x}+C e^{3 x}-e^{x}\left(\frac{x}{8}+\frac{x^{3}}{12}\right) .
$$

4. Solve $y^{\prime \prime}+y^{\prime}-2 y=e^{x}$.

Solution: Characteristic equation of the homogeneous part is: $m^{2}+m-2=0, \quad m=$ $1,-2$. Solution for the homogeneous part: $c_{1} e^{x}+c_{2} e^{-2 x}$.

Particular integral:

$$
\frac{1}{D^{2}+D-2} e^{x}=x \frac{1}{2 D+1} e^{x}=\frac{x e^{x}}{(2.1+1)}=\frac{x e^{x}}{3} .
$$

General solution:

$$
c_{1} e^{x}+c_{2} e^{-2 x}+\frac{x e^{x}}{3} .
$$

5. Solve by using operator method $\left(D^{2}+9\right) y=\sin 2 x \cos x$.

Solution:

Characteristic equation of the homogeneous part is: $m^{2}+9=0, \quad m= \pm 3 i$. Solution for the homogeneous part: $c_{1} \cos 3 x+c_{2} \sin 3 x$.

Particular integral:

$$
\frac{1}{D^{2}+9} \sin 2 x \cos x=\frac{1}{2\left(D^{2}+9\right)}(\sin 3 x+\sin x) .
$$

Now

$$
\frac{1}{D^{2}+9} e^{i x}=e^{i x} /\left(i^{2}+9\right)=(\cos x+i \sin x) / 8 .
$$

Taking the imaginary part,

$$
\frac{1}{2\left(D^{2}+9\right)}(\sin x)=\sin x / 16 .
$$

Now

$$
\frac{1}{D^{2}+9} e^{3 i x}=\frac{x e^{3 i x}}{2.3 i}=(x \cos 3 x+i x \sin 3 x) / 6 i .
$$

Taking the imaginary part,

$$
\frac{1}{2\left(D^{2}+9\right)}(\sin 3 x)=-(x \cos 3 x) / 12 .
$$

General solution:

$$
c_{1} \cos 3 x+c_{2} \sin 3 x+\sin x / 16-(x \cos 3 x) / 12 .
$$

6. Find a particular integral by operator method: $D^{2}-6 D+9=1+x+x^{2}$.

Solution:

$$
P . I=\frac{1}{D^{2}-6 D+9} 1+x+x^{2}=\frac{1}{9\left(1+\left(D^{2}-6 D\right) / 9\right)} 1+x+x^{2}
$$

$$
\begin{gathered}
=\frac{1}{9}\left[1-\left(D^{2}-6 D\right) / 9+\left(D^{2}-6 D\right)^{2} / 81-\cdots\right]\left(1+x+x^{2}\right) \\
=\frac{1}{9}\left[1+2 D / 3+D^{2} / 3+\cdots\right]\left(1+x+x^{2}\right)=\left(1+x+x^{2}+2 / 3+4 x / 3+2 / 3\right) \\
=\frac{1}{9}\left(7 / 3+7 x / 3+x^{2}\right) .
\end{gathered}
$$

7. Find P.I: $y^{\prime \prime}+9 y=x \cos x$.

Solution:

Consider

$$
\begin{gathered}
\frac{1}{D^{2}+9} x e^{i x}=e^{i x} \frac{1}{(D+i)^{2}+9} x=e^{i x} \frac{1}{D^{2}+2 i D+8} x=e^{i x} \frac{1}{8\left(1+D^{2} / 8+i D / 4\right)} x \\
=e^{i x} \frac{1}{8}\left(1-D^{2} / 8-i D / 4\right) x=e^{i x} \frac{1}{8}(x-i / 4)
\end{gathered}
$$

Taking the real part:

$$
\frac{1}{D^{2}+9} x \cos x=\frac{x \cos x}{8}+\frac{\sin x}{32} .
$$

8. (T) Solve $x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=x^{2}+2 \log x, \quad x>0$.

Solution:

Apply the transformation $x=e^{t}$ the equation reduces to $y^{\prime \prime}-3 y-4=e^{2 t}+2 t$.
Solution of the homogeneous part $c_{1} e^{4 t}+c_{2} e^{-t}$.
Particular integral: $\frac{1}{D^{2}-3 D-4}\left(e^{2 t}+2 t\right)=-e^{2 t} / 6+\frac{1}{D^{2}-3 D-4} 2 t=-\frac{1}{6} e^{2 t}-\frac{1}{2}(t-3 / 4)$.

$$
\frac{1}{D^{2}-3 D-4} 2 t=2 \frac{1}{-4\left(1-D^{2} / 4+3 D / 4\right)} t=-\frac{1}{2}\left[1+\left(D^{2} / 4-3 D / 4+\cdots\right)\right] t=\frac{-1}{2}(t-3 / 4) .
$$

Hence the general solution is:

$$
y=c_{1} e^{4 t}+c_{2} e^{-t}-\frac{1}{6} e^{2 t}-\frac{1}{2}(t-3 / 4)=c_{1} x^{4}+c_{2} / x-\frac{1}{6} x^{2}-\frac{1}{2}(\ln x-3 / 4) .
$$

9. (T) (Higher order variation of parameter) Consider the n-th order linear equation

$$
y^{(n)}+\sum_{1}^{n} a_{i}(x) y^{(i)}=y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=r(x) .
$$

Assume that y_{1}, \cdots, y_{n} are n-independent solutions of the associated homogeneous equation. Prove that a particular integral of the given ODE is

$$
y_{p}=\sum v_{i} y_{i} \text { where } v_{i}^{\prime}=\frac{R_{i}}{W} .
$$

Here W is the wronskian of y_{1}, \cdots, y_{n} and R_{i} is the determinant obtained by replacing i-th column of W by $[0,0, \cdots, 0, r(x)]$.

Solution:

Let

$$
y_{p}=\sum v_{i} y_{i}------(1) .
$$

Differentiating $y_{p}^{\prime}=\sum v_{i}^{\prime} y_{i}+\sum v_{i} y_{i}^{\prime}$. Assume $\sum v_{i}^{\prime} y_{i}=0$ then

$$
y_{p}^{\prime}=\sum v_{i} y_{i}^{\prime}-----(2) .
$$

Differentiating this $y_{p}^{\prime \prime}=\sum v_{i}^{\prime} y_{i}^{\prime}+v_{i} y_{i}^{\prime \prime}$. Assuming $\sum v_{i}^{\prime} y_{i}^{\prime}=0$ we have

$$
y_{p}^{\prime \prime}=\sum v_{i} y_{i}^{\prime \prime} .------(3)
$$

Proceeding similarly, we get

$$
y_{p}^{(n-1)}=\sum v_{i} y_{i}^{(n-1)}----(n)
$$

if $\sum v_{i}^{\prime} y_{i}^{(n-2)}=0$.

$$
y_{p}^{(n)}=\sum v_{i}^{\prime} y_{i}^{(n-1)}+\sum v_{i} y_{i}^{(n)}-----(n+1) .
$$

Then

$$
y_{p}^{(n)}+\sum_{1}^{n} a_{i}(x) y_{p}^{(i)}=\sum v_{i}^{\prime} y_{i}^{(n-1)} .
$$

Hence y_{p} is a solution of the given ODE if

$$
\sum v_{i}^{\prime} y_{i}=0, \quad \sum v_{i}^{\prime} y_{i}^{\prime}=0, \quad \sum v_{i}^{\prime} y_{i}^{\prime \prime}=0, \cdots, \sum v_{i}^{\prime} y_{i}^{(n-2)}=0, \sum v_{i}^{\prime} y_{i}^{(n-1)}=r(x)
$$

Solution such system of linear equation is given by $v_{i}^{\prime}=\frac{R_{i}}{W}$ where W is the wronskian of y_{1}, \cdots, y_{n} and R_{i} is the determinant obtained by replacing i-th column of W by $[0,0, \cdots, 0, r(x)]$.
10. (i) Let $y_{1}(x), y_{2}(x)$ are two linearly independent solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. Show that $\phi(x)=\alpha y_{1}(x)+\beta y_{2}(x)$ and $\psi(x)=\gamma y_{1}(x)+\delta y_{2}(x)$ are two linearly independent solutions if and only if $\alpha \delta \neq \beta \gamma$.
(ii) Show that the zeros of the functions $a \sin x+b \cos x$ and $c \sin x+d \cos x$ are distinct and occur alternately whenever $a d-b c \neq 0$.

Solution:

(i) We have $W(\phi, \psi)=(\alpha \delta-\beta \gamma) W\left(y_{1}, y_{2}\right)$. Since y_{1}, y_{2} are fundamental solutions, $W\left(y_{1}, y_{2}\right) \neq 0$. If $\alpha \delta \neq \beta \gamma$, then $W(\phi, \psi) \neq 0$. Conversely if $W(\phi, \psi) \neq 0$, then $\alpha \delta \neq \beta \gamma$.
(ii) We know $\sin x, \cos x$ are independent solutions of $y^{\prime \prime}+y=0$. So by part (i) $a \sin x+$ $b \cos x$ and $c \sin x+d \cos x$ are independent solutions whenever $a d-b c \neq 0$. Hence the result follows from Sturm Separation theorem (Simmons, page 190, Theorem A).
11. (T) Show that any nontrivial solution $u(x)$ of $u^{\prime \prime}+q(x) u=0, q(x)<0$ for all x, has at most one zero.

Solution:

Consider the equation $z^{\prime \prime}=0$. Then $z=1$ is a solution of the equation. By Strum comparison theorem, between two zeros of $u(x)$ there must be at least one zero of $z(x)$. But $z=1$ has no zero. Hence $u(x)$ can have at most one zero.
12. Let $u(x)$ be any nontrivial solution of $u^{\prime \prime}+[1+q(x)] u=0$, where $q(x)>0$. Show that $u(x)$ has infinitely many zeros.

Solution:

Consider

$$
v^{\prime \prime}+v=0, \quad u^{\prime \prime}+(1+q(x)) u=0
$$

Now $v=\sin x$ is a nontrivial solution of $v^{\prime \prime}+v=0$. Since $1+q(x)>1$, by Strum comparison theorem, u must vanish between two zeros of $\sin x$. Since, $\sin x$ has infinitely many zeros, u also has infinitely may zeros.
13. Let $u(x)$ be any nontrivial solution of $u^{\prime \prime}+q(x) u=0$ on a closed interval $[a, b]$. Show that $u(x)$ has at most a finite number of zeros in $[a, b]$.

Solution:

Suppose, on the contrary, $u(x)$ has infinite number of zeros in $[a, b]$. It follows that there exists $x_{0} \in[a, b]$ and a sequence of zeros $x_{n} \neq x_{0}$ such that $x_{n} \rightarrow x_{0}$. Since $u(x)$ is continuous and differentiable at x_{0}, we have

$$
u\left(x_{0}\right)=\lim _{x_{n} \rightarrow x_{0}} u\left(x_{n}\right)=0, \quad u^{\prime}\left(x_{0}\right)=\lim _{x_{n} \rightarrow x_{0}} \frac{u\left(x_{n}\right)-u\left(x_{0}\right)}{x_{n}-x_{0}}=0
$$

By uniqueness theorem, $u \equiv 0$ which contradicts the fact that u is nontrivial.
14. (\mathbf{T}) Let J_{p} be any non-trivial solution of the Bessel equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, \quad x>0 .
$$

Show that J_{p} has infinitely many positive zeros.

Solution:

The normal form of Bessel equation is

$$
u^{\prime \prime}+\left(1+\frac{1 / 4-p^{2}}{x^{2}}\right) u=0 .
$$

Given $p \geq 0$, we can choose x_{0} large enough such that $1+\frac{1 / 4-p^{2}}{x^{2}}>1 / 4$ for all $x \in\left(x_{0}, \infty\right)$. Compare J_{p} with $\sin (x / 2)$ which is solution of $v^{\prime \prime}+\frac{1}{4} v=0$ in $\left(x_{0}, \infty\right)$. Clearly $\sin (x / 2)$ has infinitely many zeros in $\left(x_{0}, \infty\right)$. By Sturm comparison theorem, between two consecutive zeros of $\sin (x / 2)$ there is a zero of J_{p}. Hence J_{p} has infinitely many zero in $\left(x_{0}, \infty\right)$.
15. (T) Consider $u^{\prime \prime}+q(x) u=0$ on an interval $I=(0, \infty)$ with $q(x) \geq m^{2}$ for all $t \in I$. Show any non trivial solution $u(x)$ has infinitely many zeros and distance between two consecutive zeros is at most π / m.
Solution: Compare $u(x)$ with $\sin m x$ which is a solution of $v^{\prime \prime}+m^{2} v=0$. By Sturm comparison theorem, between two consecutive zeros of $v(x)=\sin (m x)$ there is a zero of $u(x)$. Hence $u(x)$ has infinitely many zero in $\left(x_{0}, \infty\right)$.
Let $u(a)=0$. We will show that $u(x)$ has a zero in $(a, a+\pi / m]$. Consider $v(x)=$ $\sin (m x-m a)$ which is a solution of $v^{\prime \prime}+m^{2} v=0$. Clearly $v(a)=v(a+\pi / m)=0$. Hence by Sturm comparison theorem, there exists at least one zero of $u(x)$ in $(a, a+\pi / m)$. Hence distance between two consecutive zeros of $u(x)$ is at most π / m.
16. Consider $u^{\prime \prime}+q(x) u=0$ on an interval $I=(0, \infty)$ with $q(x) \leq m^{2}$ for all $t \in I$. Show that distance between two consecutive zeros is at least π / m.

Solution:

Suppose $u(a)=0$ and $u(b)$ be two consecutive zeros. Consider $v(x)=\sin (m x-m a)$ which is a solution of $v^{\prime \prime}+m^{2} v=0$. By Sturm comparison theorem, there exists a zero of $v(x)$ in (a, b). But we know that $v(a)=0$ and next zero of v is at $a+\pi / m$. So $b>a+\pi / m$.
17. (\mathbf{T}) Let J_{p} be any non-trivial solution of the Bessel equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, \quad x>0
$$

Show that (i) If $0 \leq p \leq 1 / 2$, then every interval of length π has at least contains at least one zero of J_{p}.
(ii) If $p=1 / 2$ then distance between consecutive zeros of J_{p} is exactly π.
(iii) If $p>1 / 2$ then every interval of length π contains at most one zero of J_{p}.

Solution: The normal form of Bessel equation is

$$
u^{\prime \prime}+\left(1+\frac{1 / 4-p^{2}}{x^{2}}\right) u=0
$$

The zeros of J_{p} and $u(x)$ are same.
(i)Apply exercise 15 with $m=1$.
(ii) Clear from normal form.
(iii) Apply exercise 16 with $m=1$.
18. Let $y(x)$ be a non-trivial solution of $y^{\prime \prime}+q(x) y=0$. Prove that if $q(x)>k / x^{2}$ for some $k>1 / 4$ then y has infinitely many positive zeros. If $q(x)<\frac{1}{4 x^{2}}$ then y has only finitely many positive zeros.

Solution:

Consider the Cauchy-Euler equation $y^{\prime \prime}+\frac{k y}{x^{2}}=0$. With $x=e^{t}$, it transforms into $y^{\prime \prime}-y^{\prime}+k y=0$. So characteristic equation $m^{2}-m+k=0$. So $1-4 k=0$ implies two equal real roots and so the solution has finitely many zeros. If $1-4 k<0$ then complex conjugate roots and solution look like $x^{m} \sin (\beta x)$ and it has infinitely many zeros. Rest follows from Sturm comparison theorem.

