
ODE: Assignment-5

(For calculations of Particular Integrals by operator method, see Simmons books, page 161,

section 23 of the chapter Second order linear equations.)

1. Solve: (i) x2y′′+ 2xy′− 12y = 0 (ii)(T) x2y′′+ 5xy′+ 13y = 0 (iii) x2y′′− xy′+ y = 0

[Recall: The ODE of the form x2
d2y

dx2
+ ax

dy

dx
+ by = 0, where a, b are constants, is

called the Cauchy-Euler equation. Under the transformation x = et (when x > 0) for

the independent variable, the above reduces to
d2y

dt2
+ (a − 1)

dy

dt
+ by = 0, which is an

equation with constant coefficients. ]

Solution:

(i) Using the substitution x = et, the given equation reduces to

d2u

dt2
+
du

dt
−12u = 0 =⇒ m2+m−12 = 0 =⇒ m = −4, 3 =⇒ u(t) = Ae−4t+Be3t = y(et).

The general solution is thus

y(x) =
A

x4
+Bx3.

(ii) Using the substitution x = et, the given equation reduces to,

d2u

dt2
+ 4

du

dt
+ 13u = 0 =⇒ m2 + 4m+ 13 = 0 =⇒ m = −2± 3i.

Thus

u(t) = e−2t(A cos 3t+B sin 3t) = y(et).

The general solution is

y(x) =
1

x2
(
A cos(3 lnx) +B sin(3 lnx)

)
.

(iii) Using the substitution x = et, the given equation reduces to

d2u

dt2
−2

du

dt
+u = 0 =⇒ m2−2m+ 1 = 0 =⇒ m = 1, 1 =⇒ u(t) = et(A+Bt) = y(et)

The general solution is thus

y(x) = ex(A+B lnx).

2. (Higher order Cauchy-Euler equations) Let us denote D = d
dx

and D = d
dt

where x = et.

Show that

xD = D, x2D2 = D(D − 1), x3D3 = D(D − 1)(D − 2).

Hence conclude that (x3D+ax2D2 + bxD+ c)y = 0, x > 0 is transformed into constant

coefficients ODE [D(D − 1)(D − 2) + aD(D − 1) + bD + c]y = 0 by the substitution

x = et.



Solution:

Given x = et, so dx
dt

= et = x. Now, by chain rule, d
dx

= d
dt

dt
dx

= e−t d
dt
. Thus xD =

D. Differentiating this with respect to x, we have xD2 + D = D2 dt
dx

= D2e−t, =⇒
x2D2 + xD = D2, =⇒ x2D2 = D2 −D = D(D − 1).

Differentiating x2D2 = D2−D with respect to x, we have x2D3 + 2xD2 = [D3−D2]e−t,

=⇒ x3D3 = D3 −D2 − 2D(D − 1) = D(D − 1)(D − 2).

3. Find a particular solution of each of the following equations by operator methods and

hence find its general solution:

(i) y′′ + 4y = 2 cos2 x+ 10ex (ii)(T) y′′ + y = sinx+ (1 + x2)ex

(T) (iii) y′′ − y = e−x(sinx+ cosx) (iv) y′′′ − 3y′′ − y′ + 3y = x2ex

Solution:

(i) Characteristic equation m2 + 4 = 0 =⇒ m = ±2i. Hence homogeneous solution

yh = A cos 2x+B sin 2x. Now r(x) = 2 cos2 x+ 10ex = cos 2x+ 1 + 10ex. Let D ≡ d/dx

and yp be the particular solution. Then

1

D2 + 4
1 =

1

D2 + 4
e0x = 1/4.

1

D2 + 4
10ex = 10

1

12 + 4
ex = 2ex.

1

D2 + 4
e2ix = x

1

2D
e2ix = x

1

2.2i
e2ix = xe2ix/4i.

Taking real part
1

D2 + 4
cos 2x = x sin 2x/4.

Adding, we get the particular solution as

yp =
x sin 2x

4
+

1

4
+ 2ex.

Thus the general solution is

y = A cos 2x+B sin 2x+
x sin 2x

4
+

1

4
+ 2ex.

(ii) Characteristic equation m2 + 1 = 0 =⇒ m = ±i. Hence homogeneous solution

yh = A cosx + B sinx. Now r(x) = sinx + (1 + x2)ex. Let D ≡ d/dx and yp be the

particular solution. Then

1

1 +D2
eix = x

1

2D
eix = x

1

2i
eix =

x

2i
(cosx+ i sinx).

Taking imaginary part
1

1 +D2
sinx = −x cosx

2
.



1

1 +D2
(1 + x2)ex = ex

1

(D + 1)2 + 1
(1 + x2) = ex

1

D2 + 2D + 2
(x2 + 1)

=
ex

2

1

1 +D +D2/2
(x2 + 1) =

ex

2
(1−D −D2/2 + (D +D2/2)2 + · · · )(x2 + 1)

=
ex

2
(1−D−D2/2+D2/2+· · · )(x2+1) =

ex

2
(1−D+D2/2+· · · )(x2+1) =

ex

2
(1+x2−2x+1)

Thus the general solution is

y = A cosx+B sinx− x cosx

2
+

(
1− x+

x2

2

)
ex

(iii) Characteristic equation m2 − 1 = 0 =⇒ m = ±1. Hence homogeneous solution

yh = Aex +Be−x. Now r(x) = e−x(sinx+cosx). Let D ≡ d/dx and yp be the particular

solution.

1

D2 − 1
e−xeix =

e−xeix

(i− 1)2 − 1
=

e−xeix

−2i− 1
= −e

−x

5
[cosx+ 2 sinx+ i(sinx− 2 cosx)].

Then the particular solution is obtained by adding the real and imaginary parts:

yp(x) =
e−x(cosx− 3 sinx)

5

Thus the general solution is

y = Aex +Be−x +
e−x(cosx− 3 sinx)

5

(iv) Characteristic equation m3 − 3m2 −m + 3 = 0 =⇒ m = −1, 1, 3. Hence homoge-

neous solution yh = Ae−x +Bex +Ce3x. Now r(x) = x2ex. Let D ≡ d/dx and yp be the

particular solution. Then

1

D3 − 3D2 −D + 3
x2ex =

1

(D − 1)3 − 4(D − 1)
x2ex = ex

1

D3 − 4D
x2

= ex
1

−4D(1−D2/4)
x2 = ex

1

−4D
(1 +D2/4 + · · · )x2 = ex

1

−4D
(x2 +

1

2
) = −e

x

4
(
x3

3
+
x

2
).

So the particular integral is

yp(x) = −ex
(
x

8
+
x3

12

)
.

Thus the general solution is

y = Ae−x +Bex + Ce3x − ex
(
x

8
+
x3

12

)
.



4. Solve y′′ + y′ − 2y = ex.

Solution: Characteristic equation of the homogeneous part is: m2 +m− 2 = 0, m =

1,−2. Solution for the homogeneous part: c1e
x + c2e

−2x.

Particular integral:

1

D2 +D − 2
ex = x

1

2D + 1
ex =

xex

(2.1 + 1)
=
xex

3
.

General solution:

c1e
x + c2e

−2x +
xex

3
.

5. Solve by using operator method (D2 + 9)y = sin 2x cosx.

Solution:

Characteristic equation of the homogeneous part is: m2 + 9 = 0, m = ±3i. Solution for

the homogeneous part: c1 cos 3x+ c2 sin 3x.

Particular integral:

1

D2 + 9
sin 2x cosx =

1

2(D2 + 9)
(sin 3x+ sinx).

Now
1

D2 + 9
eix = eix/(i2 + 9) = (cosx+ i sinx)/8.

Taking the imaginary part,

1

2(D2 + 9)
(sinx) = sinx/16.

Now
1

D2 + 9
e3ix =

xe3ix

2.3i
= (x cos 3x+ ix sin 3x)/6i.

Taking the imaginary part,

1

2(D2 + 9)
(sin 3x) = −(x cos 3x)/12.

General solution:

c1 cos 3x+ c2 sin 3x+ sinx/16− (x cos 3x)/12.

6. Find a particular integral by operator method: D2 − 6D + 9 = 1 + x+ x2.

Solution:

P.I =
1

D2 − 6D + 9
1 + x+ x2 =

1

9(1 + (D2 − 6D)/9)
1 + x+ x2



=
1

9
[1− (D2 − 6D)/9 + (D2 − 6D)2/81− · · · ](1 + x+ x2).

=
1

9
[1 + 2D/3 +D2/3 + · · · ](1 + x+ x2) = (1 + x+ x2 + 2/3 + 4x/3 + 2/3)

=
1

9
(7/3 + 7x/3 + x2).

7. Find P.I: y′′ + 9y = x cosx.

Solution:

Consider

1

D2 + 9
xeix = eix

1

(D + i)2 + 9
x = eix

1

D2 + 2iD + 8
x = eix

1

8(1 +D2/8 + iD/4)
x

= eix
1

8
(1−D2/8− iD/4)x = eix

1

8
(x− i/4).

Taking the real part:
1

D2 + 9
x cosx =

x cosx

8
+

sinx

32
.

8. (T) Solve x2y′′ − 2xy′ − 4y = x2 + 2 log x, x > 0.

Solution:

Apply the transformation x = et the equation reduces to y′′ − 3y − 4 = e2t + 2t.

Solution of the homogeneous part c1e
4t + c2e

−t.

Particular integral: 1
D2−3D−4(e2t + 2t) = −e2t/6 + 1

D2−3D−42t = −1
6
e2t − 1

2
(t− 3/4).

1

D2 − 3D − 4
2t = 2

1

−4(1−D2/4 + 3D/4)
t = −1

2
[1+(D2/4−3D/4+· · · )]t =

−1

2
(t−3/4).

Hence the general solution is:

y = c1e
4t + c2e

−t − 1

6
e2t − 1

2
(t− 3/4) = c1x

4 + c2/x−
1

6
x2 − 1

2
(lnx− 3/4).

9. (T) (Higher order variation of parameter) Consider the n-th order linear equation

y(n) +
n∑
1

ai(x)y(i) = y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = r(x).

Assume that y1, · · · , yn are n-independent solutions of the associated homogeneous equa-

tion. Prove that a particular integral of the given ODE is

yp =
∑

viyi where v′i =
Ri

W
.

Here W is the wronskian of y1, · · · , yn and Ri is the determinant obtained by replacing

i-th column of W by [0, 0, · · · , 0, r(x)].



Solution:

Let

yp =
∑

viyi −−−−−−(1).

Differentiating y′p =
∑
v′iyi +

∑
viy
′
i. Assume

∑
v′iyi = 0 then

y′p =
∑

viy
′
i −−−−− (2).

Differentiating this y′′p =
∑
v′iy
′
i + viy

′′
i . Assuming

∑
v′iy
′
i = 0 we have

y′′p =
∑

viy
′′
i .−−−−−−(3)

Proceeding similarly, we get

y(n−1)p =
∑

viy
(n−1)
i −−−−(n)

if
∑
v′iy

(n−2)
i = 0.

y(n)p =
∑

v′iy
(n−1)
i +

∑
viy

(n)
i −−−−−−(n+ 1).

Then

y(n)p +
n∑
1

ai(x)y(i)p =
∑

v′iy
(n−1)
i .

Hence yp is a solution of the given ODE if∑
v′iyi = 0,

∑
v′iy
′
i = 0,

∑
v′iy
′′
i = 0, · · · ,

∑
v′iy

(n−2)
i = 0,

∑
v′iy

(n−1)
i = r(x).

Solution such system of linear equation is given by v′i = Ri

W
where W is the wronskian

of y1, · · · , yn and Ri is the determinant obtained by replacing i-th column of W by

[0, 0, · · · , 0, r(x)].

10. (i) Let y1(x), y2(x) are two linearly independent solutions of y′′+p(x)y′+q(x)y = 0. Show

that φ(x) = αy1(x) + βy2(x) and ψ(x) = γy1(x) + δy2(x) are two linearly independent

solutions if and only if αδ 6= βγ.

(ii) Show that the zeros of the functions a sinx+ b cosx and c sinx+ d cosx are distinct

and occur alternately whenever ad− bc 6= 0.

Solution:

(i) We have W (φ, ψ) = (αδ − βγ)W (y1, y2). Since y1, y2 are fundamental solutions,

W (y1, y2) 6= 0. If αδ 6= βγ, then W (φ, ψ) 6= 0. Conversely if W (φ, ψ) 6= 0, then

αδ 6= βγ.

(ii) We know sinx, cosx are independent solutions of y′′+ y = 0. So by part (i) a sinx+

b cosx and c sinx + d cosx are independent solutions whenever ad − bc 6= 0. Hence the

result follows from Sturm Separation theorem ( Simmons, page 190, Theorem A).



11. (T) Show that any nontrivial solution u(x) of u′′ + q(x)u = 0, q(x) < 0 for all x, has at

most one zero.

Solution:

Consider the equation z′′ = 0. Then z = 1 is a solution of the equation. By Strum

comparison theorem, between two zeros of u(x) there must be at least one zero of z(x).

But z = 1 has no zero. Hence u(x) can have at most one zero.

12. Let u(x) be any nontrivial solution of u′′ + [1 + q(x)]u = 0, where q(x) > 0. Show that

u(x) has infinitely many zeros.

Solution:

Consider

v′′ + v = 0, u′′ +
(
1 + q(x)

)
u = 0

Now v = sin x is a nontrivial solution of v′′ + v = 0. Since 1 + q(x) > 1, by Strum

comparison theorem, u must vanish between two zeros of sinx. Since, sinx has infinitely

many zeros, u also has infinitely may zeros.

13. Let u(x) be any nontrivial solution of u′′ + q(x)u = 0 on a closed interval [a, b]. Show

that u(x) has at most a finite number of zeros in [a, b].

Solution:

Suppose, on the contrary, u(x) has infinite number of zeros in [a, b]. It follows that there

exists x0 ∈ [a, b] and a sequence of zeros xn 6= x0 such that xn → x0. Since u(x) is

continuous and differentiable at x0, we have

u(x0) = lim
xn→x0

u(xn) = 0, u′(x0) = lim
xn→x0

u(xn)− u(x0)

xn − x0
= 0

By uniqueness theorem, u ≡ 0 which contradicts the fact that u is nontrivial.

14. (T) Let Jp be any non-trivial solution of the Bessel equation

x2y′′ + xy′ + (x2 − p2)y = 0, x > 0.

Show that Jp has infinitely many positive zeros.

Solution:

The normal form of Bessel equation is

u′′ + (1 +
1/4− p2

x2
)u = 0.

Given p ≥ 0, we can choose x0 large enough such that 1+ 1/4−p2
x2 > 1/4 for all x ∈ (x0,∞).

Compare Jp with sin(x/2) which is solution of v′′+ 1
4
v = 0 in (x0,∞). Clearly sin(x/2) has

infinitely many zeros in (x0,∞). By Sturm comparison theorem, between two consecutive

zeros of sin(x/2) there is a zero of Jp. Hence Jp has infinitely many zero in (x0,∞).



15. (T) Consider u′′ + q(x)u = 0 on an interval I = (0,∞) with q(x) ≥ m2 for all t ∈ I.

Show any non trivial solution u(x) has infinitely many zeros and distance between two

consecutive zeros is at most π/m.

Solution: Compare u(x) with sinmx which is a solution of v′′ + m2v = 0. By Sturm

comparison theorem, between two consecutive zeros of v(x) = sin(mx) there is a zero of

u(x). Hence u(x) has infinitely many zero in (x0,∞).

Let u(a) = 0. We will show that u(x) has a zero in (a, a + π/m]. Consider v(x) =

sin(mx−ma) which is a solution of v′′+m2v = 0. Clearly v(a) = v(a+π/m) = 0. Hence

by Sturm comparison theorem, there exists at least one zero of u(x) in (a, a + π/m).

Hence distance between two consecutive zeros of u(x) is at most π/m.

16. Consider u′′ + q(x)u = 0 on an interval I = (0,∞) with q(x) ≤ m2 for all t ∈ I. Show

that distance between two consecutive zeros is at least π/m.

Solution:

Suppose u(a) = 0 and u(b) be two consecutive zeros. Consider v(x) = sin(mx − ma)

which is a solution of v′′ +m2v = 0. By Sturm comparison theorem, there exists a zero

of v(x) in (a, b). But we know that v(a) = 0 and next zero of v is at a + π/m. So

b > a+ π/m.

17. (T) Let Jp be any non-trivial solution of the Bessel equation

x2y′′ + xy′ + (x2 − p2)y = 0, x > 0.

Show that (i) If 0 ≤ p ≤ 1/2, then every interval of length π has at least contains at

least one zero of Jp.

(ii) If p = 1/2 then distance between consecutive zeros of Jp is exactly π.

(iii) If p > 1/2 then every interval of length π contains at most one zero of Jp.

Solution: The normal form of Bessel equation is

u′′ + (1 +
1/4− p2

x2
)u = 0.

The zeros of Jp and u(x) are same.

(i)Apply exercise 15 with m = 1.

(ii) Clear from normal form.

(iii) Apply exercise 16 with m = 1.

18. Let y(x) be a non-trivial solution of y′′ + q(x)y = 0. Prove that if q(x) > k/x2 for some

k > 1/4 then y has infinitely many positive zeros. If q(x) < 1
4x2 then y has only finitely

many positive zeros.

Solution:



Consider the Cauchy-Euler equation y′′ + ky
x2 = 0. With x = et, it transforms into

y′′ − y′ + ky = 0. So characteristic equation m2 −m+ k = 0. So 1− 4k = 0 implies two

equal real roots and so the solution has finitely many zeros. If 1− 4k < 0 then complex

conjugate roots and solution look like xm sin(βx) and it has infinitely many zeros. Rest

follows from Sturm comparison theorem.


