
ODE: Assignment-5

(For calculations of Particular Integrals by operator method, see Simmons books, page 161,

section 23 of the chapter Second order linear equations.)

1. Solve: (i) x2y′′+ 2xy′− 12y = 0 (ii)(T) x2y′′+ 5xy′+ 13y = 0 (iii) x2y′′− xy′+ y = 0

2. (Higher order Cauchy-Euler equations) Let us denote D = d
dx

and D = d
dt

where x = et.

Show that

xD = D, x2D2 = D(D − 1), x3D3 = D(D − 1)(D − 2).

Hence conclude that (x3D+ax2D2 + bxD+ c)y = 0, x > 0 is transformed into constant

coefficients ODE [D(D − 1)(D − 2) + aD(D − 1) + bD + c]y = 0 by the substitution

x = et.

3. Find a particular solution of each of the following equations by operator methods and

hence find its general solution:

(i) y′′ + 4y = 2 cos2 x+ 10ex (ii)(T) y′′ + y = sinx+ (1 + x2)ex

(T) (iii) y′′ − y = e−x(sinx+ cosx) (iv) y′′′ − 3y′′ − y′ + 3y = x2ex

4. Solve y′′ + y′ − 2y = ex.

5. Solve by using operator method (D2 + 9)y = sin 2x cosx.

6. Find a particular integral by operator method: D2 − 6D + 9 = 1 + x+ x2.

7. Find P.I: y′′ + 9y = x cosx.

8. (T) Solve x2y′′ − 2xy′ − 4y = x2 + 2 log x, x > 0.

9. (T) (Higher order variation of parameter) Consider the n-th order linear equation

y(n) +
n∑
1

ai(x)y(i) = y(n) + an−1(x)y(n−1) + · · ·+ a0(x)y = r(x).

Assume that y1, · · · , yn are n-independent solutions of the associated homogeneous equa-

tion. Prove that a particular integral of the given ODE is

yp =
∑

viyi where v′i =
Ri

W
.

Here W is the wronskian of y1, · · · , yn and Ri is the determinant obtained by replacing

i-th column of W by [0, 0, · · · , 0, r(x)].

10. (i) Let y1(x), y2(x) are two linearly independent solutions of y′′+p(x)y′+q(x)y = 0. Show

that φ(x) = αy1(x) + βy2(x) and ψ(x) = γy1(x) + δy2(x) are two linearly independent

solutions if and only if αδ 6= βγ.

(ii) Show that the zeros of the functions a sinx+ b cosx and c sinx+ d cosx are distinct

and occur alternately whenever ad− bc 6= 0.



11. (T) Show that any nontrivial solution u(x) of u′′ + q(x)u = 0, q(x) < 0 for all x, has at

most one zero.

12. Let u(x) be any nontrivial solution of u′′ + [1 + q(x)]u = 0, where q(x) > 0. Show that

u(x) has infinitely many zeros.

13. Let u(x) be any nontrivial solution of u′′ + q(x)u = 0 on a closed interval [a, b]. Show

that u(x) has at most a finite number of zeros in [a, b].

14. (T) Let Jp be any non-trivial solution of the Bessel equation

x2y′′ + xy′ + (x2 − p2)y = 0, x > 0.

Show that Jp has infinitely many positive zeros.

15. (T) Consider u′′ + q(x)u = 0 on an interval I = (0,∞) with q(x) ≥ m2 for all t ∈ I.

Show any non trivial solution u(x) has infinitely many zeros and distance between two

consecutive zeros is at most π/m.

16. Consider u′′ + q(x)u = 0 on an interval I = (0,∞) with q(x) ≤ m2 for all t ∈ I. Show

that distance between two consecutive zeros is at least π/m.

17. (T) Let Jp be any non-trivial solution of the Bessel equation

x2y′′ + xy′ + (x2 − p2)y = 0, x > 0.

Show that (i) If 0 ≤ p ≤ 1/2, then every interval of length π has at least contains at

least one zero of Jp.

(ii) If p = 1/2 then distance between consecutive zeros of Jp is exactly π.

(iii) If p > 1/2 then every interval of length π contains at most one zero of Jp.

18. Let y(x) be a non-trivial solution of y′′ + q(x)y = 0. Prove that if q(x) > k/x2 for some

k > 1/4 then y has infinitely many positive zeros. If q(x) < 1
4x2 then y has only finitely

many positive zeros.


