ODE: Assignment-5

(For calculations of Particular Integrals by operator method, see Simmons books, page 161, section 23 of the chapter Second order linear equations.)

1. Solve: (i) $x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0 \quad$ (ii)(T) $x^{2} y^{\prime \prime}+5 x y^{\prime}+13 y=0 \quad$ (iii) $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$
2. (Higher order Cauchy-Euler equations) Let us denote $D=\frac{d}{d x}$ and $\mathcal{D}=\frac{d}{d t}$ where $x=e^{t}$. Show that

$$
x D=\mathcal{D}, \quad x^{2} D^{2}=\mathcal{D}(\mathcal{D}-1), \quad x^{3} D^{3}=\mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2) .
$$

Hence conclude that $\left(x^{3} D+a x^{2} D^{2}+b x D+c\right) y=0, x>0$ is transformed into constant coefficients ODE $[\mathcal{D}(\mathcal{D}-1)(\mathcal{D}-2)+a \mathcal{D}(\mathcal{D}-1)+b \mathcal{D}+c] y=0$ by the substitution $x=e^{t}$.
3. Find a particular solution of each of the following equations by operator methods and hence find its general solution:
(i) $y^{\prime \prime}+4 y=2 \cos ^{2} x+10 e^{x}$
(ii)($\mathbf{T}) y^{\prime \prime}+y=\sin x+\left(1+x^{2}\right) e^{x}$
(T) (iii) $y^{\prime \prime}-y=e^{-x}(\sin x+\cos x)$
(iv) $y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2} e^{x}$
4. Solve $y^{\prime \prime}+y^{\prime}-2 y=e^{x}$.
5. Solve by using operator method $\left(D^{2}+9\right) y=\sin 2 x \cos x$.
6. Find a particular integral by operator method: $D^{2}-6 D+9=1+x+x^{2}$.
7. Find P.I: $y^{\prime \prime}+9 y=x \cos x$.
8. (T) Solve $x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=x^{2}+2 \log x, \quad x>0$.
9. (\mathbf{T}) (Higher order variation of parameter) Consider the n-th order linear equation

$$
y^{(n)}+\sum_{1}^{n} a_{i}(x) y^{(i)}=y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{0}(x) y=r(x) .
$$

Assume that y_{1}, \cdots, y_{n} are n-independent solutions of the associated homogeneous equation. Prove that a particular integral of the given ODE is

$$
y_{p}=\sum v_{i} y_{i} \text { where } v_{i}^{\prime}=\frac{R_{i}}{W} .
$$

Here W is the wronskian of y_{1}, \cdots, y_{n} and R_{i} is the determinant obtained by replacing i-th column of W by $[0,0, \cdots, 0, r(x)]$.
10. (i) Let $y_{1}(x), y_{2}(x)$ are two linearly independent solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. Show that $\phi(x)=\alpha y_{1}(x)+\beta y_{2}(x)$ and $\psi(x)=\gamma y_{1}(x)+\delta y_{2}(x)$ are two linearly independent solutions if and only if $\alpha \delta \neq \beta \gamma$.
(ii) Show that the zeros of the functions $a \sin x+b \cos x$ and $c \sin x+d \cos x$ are distinct and occur alternately whenever $a d-b c \neq 0$.
11. (T) Show that any nontrivial solution $u(x)$ of $u^{\prime \prime}+q(x) u=0, q(x)<0$ for all x, has at most one zero.
12. Let $u(x)$ be any nontrivial solution of $u^{\prime \prime}+[1+q(x)] u=0$, where $q(x)>0$. Show that $u(x)$ has infinitely many zeros.
13. Let $u(x)$ be any nontrivial solution of $u^{\prime \prime}+q(x) u=0$ on a closed interval $[a, b]$. Show that $u(x)$ has at most a finite number of zeros in $[a, b]$.
14. (T) Let J_{p} be any non-trivial solution of the Bessel equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, \quad x>0 .
$$

Show that J_{p} has infinitely many positive zeros.
15. (T) Consider $u^{\prime \prime}+q(x) u=0$ on an interval $I=(0, \infty)$ with $q(x) \geq m^{2}$ for all $t \in I$. Show any non trivial solution $u(x)$ has infinitely many zeros and distance between two consecutive zeros is at most π / m.
16. Consider $u^{\prime \prime}+q(x) u=0$ on an interval $I=(0, \infty)$ with $q(x) \leq m^{2}$ for all $t \in I$. Show that distance between two consecutive zeros is at least π / m.
17. (T) Let J_{p} be any non-trivial solution of the Bessel equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0, \quad x>0 .
$$

Show that (i) If $0 \leq p \leq 1 / 2$, then every interval of length π has at least contains at least one zero of J_{p}.
(ii) If $p=1 / 2$ then distance between consecutive zeros of J_{p} is exactly π.
(iii) If $p>1 / 2$ then every interval of length π contains at most one zero of J_{p}.
18. Let $y(x)$ be a non-trivial solution of $y^{\prime \prime}+q(x) y=0$. Prove that if $q(x)>k / x^{2}$ for some $k>1 / 4$ then y has infinitely many positive zeros. If $q(x)<\frac{1}{4 x^{2}}$ then y has only finitely many positive zeros.

