MTH102-ODE Assignment-6

1. (T) Consider $f(x)=e^{-\frac{1}{x^{2}}}$ for $x \neq 0$ and $f(0)=0$. Then:
(a) Calculate $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$.
(b) Prove derivative of $\frac{c}{x^{p}} e^{-1 / x^{2}}$ consists of sum of terms of similar form. Hence deduce that $f^{(n)}(x)$ consists of sum terms of the form $\frac{c}{x^{p}} e^{-1 / x^{2}}$ for different $c, p \in \mathbb{N}$.
(c) Prove that

$$
\lim _{x \rightarrow 0} \frac{c}{x^{p}} e^{-1 / x^{2}}=0, \quad c, p \in \mathbb{N}
$$

(d) Deduce that $f^{(n)}(0)=0$ for all n.
(e) Thus conclude that f is infinitely differentiable but f is not analytic at 0 .
[Recall: A real valued function is said to be analytic at x_{0} if $f(x)$ can be written as a convergent power series $\sum a_{n}\left(x-x_{0}\right)^{n}$ on $\left|x-x_{0}\right|<R$ for some $R>0$. A function is analytic on a domain Ω if it is analytic at each $x_{0} \in \Omega$. We know that any analytic function is infinitely differentiable BUT there exists infinitely real differentiable functions which are not analytic.

Solution:

(a)
$f^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}, f^{\prime \prime}(x)=\frac{4}{x^{6}} e^{-1 / x^{2}}-\frac{6}{x^{4}} e^{-1 / x^{2}}, f^{\prime \prime \prime}(x)=\frac{8}{x^{9}} e^{-1 / x^{2}}-\frac{36}{x^{7}} e^{-1 / x^{2}}+\frac{24}{x^{5}} e^{-1 / x^{2}}$.
(b)

$$
\frac{d}{d x}\left(\frac{c}{x^{p}} e^{-1 / x^{2}}\right)=-\frac{p c}{x^{p+1}} e^{-1 / x^{2}}+\frac{2 c}{x^{p+3}} e^{-1 / x^{2}} .
$$

Clearly, by induction, $f^{(n)}(x)$ consists of sum terms of the form $\frac{c}{x^{p}} e^{-1 / x^{2}}$ for different $c, p \in \mathbb{N}$.
(c)

$$
\lim _{x \rightarrow 0} \frac{c}{x^{p}} e^{-1 / x^{2}}=\lim _{u \rightarrow \infty} c u^{p} e^{-u^{2}}=\lim _{u \rightarrow \infty} \frac{c u^{p}}{e^{u^{2}}}=0 . \quad c, p \in \mathbb{N} .
$$

(d) Combining (b) and (c) we conclude that $f^{(n)}(0)=0$ for all n.
(e) If $f(x)=\sum a_{n} x^{n}$ on a nbd of 0 , then $a_{n}=f^{(n)}(0) / n!=0$. Hence $f=0$ on a nbd of 0 . This is a contradiction. So f is not analytic at 0 .
2. Prove that if f, g are analytic at x_{0} and $g\left(x_{0}\right) \neq 0$ then f / g is analytic at x_{0}.

Solution:

Assume $f(x)=\sum a_{n}\left(x-x_{0}\right)^{n}$ and $g(x)=\sum b_{n}\left(x-x_{0}\right)^{n}$ with $g\left(x_{0}\right)=b_{0} \neq 0$.
Claim: We can find $c_{n} \in \mathbb{R}$ such that $f / g=\sum c_{n}\left(x-x_{0}\right)^{n}$ i.e.

$$
\sum a_{n}\left(x-x_{0}\right)^{n}=\sum b_{m}\left(x-x_{0}\right)^{m} \sum c_{k}\left(x-x_{0}\right)^{k} .
$$

Equating coefficients of different x^{n} :
$a_{0}=b_{0} c_{0} \Longrightarrow c_{0}=a_{0} / b_{0}$.
$a_{1}=b_{0} c_{1}+b_{1} c_{0} \Longrightarrow c_{1}$ can be found using known value of c_{0}.
$a_{2}=b_{0} c_{2}+b_{1} c_{1}+b_{2} c_{0} \Longrightarrow c_{2}$ can be found using known values of c_{0}, c_{1}.
Thus inductively we can solve for all $c_{k}^{\prime} s$.
3. (T)(i) Prove that zeros of an analytic function $f(x)$, which is not identically zero, are isolated points i.e. if x_{0} is a zero of $f(x)$ then there exists $\epsilon>0$ such that $f(x) \neq 0$ for all $0<\left|x-x_{0}\right|<\epsilon$.
(T)(ii) Deduce that f, g analytic on an interval I and $W(f, g)=0$ on I then f, g are linearly dependent on I.
(Compare this with the result we have proved before: if $W\left(y_{1}, y_{2}\right)=0$ and they are solution of second order linear homogeneous equation, then y_{1}, y_{2} are linearly dependent.)
Solution: (i) Write $f(x)=\sum_{n \geq 0} a_{n}\left(x-x_{0}\right)^{n}$ on $\left|x-x_{0}\right|<R$ for some $R>0$. Since a power series can be differentiated term by term, we get $n!a_{n}=f^{(n)}\left(x_{0}\right)$. Since $f\left(x_{0}\right)=0$, we have $a_{0}=0$. Since f is not zero function there exists m such that $a_{m} \neq 0$. Choose m to be the least such that $a_{m} \neq 0$. Then $f(x)=a_{m}\left(x-x_{0}\right)^{m}+a_{m+1}\left(x-x_{0}\right)^{m+1}+\cdots=$ $\left(x-x_{0}\right)^{m}\left[a_{m}+a_{m+1}\left(x-x_{0}\right)+\cdots\right]=\left(x-x_{0}\right)^{m} g(x)$ where g is analytic and $g\left(x_{0}\right)=a_{m} \neq 0$. By continuity of g, there exists exists $\epsilon>0$ such that $g(x) \neq 0$ for all $\left|x-x_{0}\right|<\epsilon$. Hence $f(x) \neq 0$ for all $0<\left|x-x_{0}\right|<\epsilon$.
(ii) Given that $f g^{\prime}-f^{\prime} g=0$ on an interval I. Since zeros of f are isolated points we can choose an interval $I^{\prime} \subset I$ such that $f \neq 0$ on I^{\prime}. Then on I^{\prime}, we have $\left(f g^{\prime}-f^{\prime} g\right) / f^{2}=0$, implies $(g / f)^{\prime}=0$, imples $g=c f$ on I^{\prime}. Now $h=g-c f$ is analytic on I and h is zero on an interval I^{\prime} i.e. h has non isolated zero. Hence by (i), we must have $h=0$ on I.
4. Is x_{0} is an ordinary point of the ODE? If so expand $p(x), q(x)$ in power series about x_{0}. Find a minimum value for the radius of convergence of a power series solution about x_{0}.
(a) $(x+1) y^{\prime \prime}-3 x y^{\prime}+2 y, \quad x_{0}=1$
(T)(b) $\left(1+x+x^{2}\right) y^{\prime \prime}-3 y=0, \quad x_{0}=1$.

Solution:

(a) Here $p(x)=-3 x /(x+1), \quad q(x)=2 /(x+1)$. Clearly $x_{0}=1$ is an ordinary point.

Now $x /(x+1)=x /(2+x-1)=\frac{x}{2} \frac{1}{1+(x-1) / 2}=\frac{1}{2}(x-1+1) \sum[(1-x) / 2]^{n}$ valid for $|1-x|<2$.
The only singular point is $x=-1$. Thus the minimum radius of convergence of the solution is the distance between $x_{0}=1$ and -1 , which is 2 .
(b) Here $p(x)=0, q(x)=-3 /\left(x^{2}+x+1\right)$. Clearly $x_{0}=1$ is an ordinary point.

The singular points are $x=(-1 \pm \sqrt{3} i) / 2$. Thus the minimum radius of convergence of the solution is the distance between $x_{0}=1$ and $(-1 \pm \sqrt{3} i) / 2$, which is $\sqrt{3}$.

Now for $t=x-1$

$$
\frac{1}{x^{2}+x+1}=\frac{1}{3+3 t+t^{2}}=\frac{1}{\left.3\left(1+\left[t^{2}+3 t\right) / 3\right]\right)}=\frac{1}{3} \sum\left[-\left(t^{2}+3 t\right) / 3\right]^{n}
$$

valid for $\left|\left(t^{2}+3 t\right) / 3\right|<1$ that is $|t|<\sqrt{3}$.
5. Locate and classify the singular points in the following:
(T)(i) $x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0$
(ii) $(3 x+1) x y^{\prime \prime}-x y^{\prime}+2 y=0$

Solution:

(i) The given ODE can be written as

$$
y^{\prime \prime}-\frac{2}{x^{3}} y^{\prime}+\frac{3}{x^{2}(x-1)} y=0
$$

Hence, $x=1$ regular and $x=0$ irregular singular points
(ii) The given ODE can be written as

$$
y^{\prime \prime}-\frac{1}{3 x+1} y^{\prime}+\frac{2}{x(3 x+1)} y=0
$$

Hence, both $x=0, x=-1 / 3$ are regular singular points
6. Consider the equation $y^{\prime \prime}+y^{\prime}-x y=0$.
(i) Find the power series solutions $y_{1}(x)$ and $y_{2}(x)$ such that $y_{1}(0)=1, y_{1}^{\prime}(0)=0$ and $y_{2}(0)=0, y_{2}^{\prime}(0)=1$.
(ii) Find the radius of convergence for $y_{1}(x)$ and $y_{2}(x)$.

Solution:

(i) Substituting $y=\sum_{n=0} a_{n} x^{n}$ into $y^{\prime \prime}+y^{\prime}-x y=0$, we get

$$
\sum_{n=0}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}(n+1) a_{n+1} x^{n}-\sum_{n=1} a_{n-1} x^{n}=0
$$

Rearranging, we find

$$
\left(2 a_{2}+a_{1}\right)+\sum_{n=1}\left[(n+2)(n+1) a_{n+2}+(n+1) a_{n+1}-a_{n-1}\right] x^{n}=0
$$

Hence,

$$
2 a_{2}+a_{1}=0, a_{n+2}=-\frac{a_{n+1}}{n+2}+\frac{a_{n-1}}{(n+1)(n+2)}, \quad n \geq 1 .
$$

Iterating we get

$$
a_{2}=-a_{1} / 2, a_{3}=a_{1} /(2 \cdot 3)+a_{0} /(2 \cdot 3), a_{4}=a_{1} /(2 \cdot 3 \cdot 4)-a_{0} /(2 \cdot 3 \cdot 4), \cdots .
$$

Thus,

$$
\begin{aligned}
y & =a_{0}\left[1+\frac{x^{3}}{2 \cdot 3}-\frac{x^{4}}{2 \cdot 3 \cdot 4}+\frac{x^{5}}{2 \cdot 3 \cdot 4 \cdot 5}+\cdots\right]+a_{1}\left[x-\frac{x^{2}}{2}+\frac{x^{3}}{2 \cdot 3}+\frac{x^{4}}{2 \cdot 3 \cdot 4}-\frac{4 x^{5}}{2 \cdot 3 \cdot 4 \cdot 5}+\cdots\right] \\
& =a_{0} y_{1}(x)+a_{1} y_{2}(x) .
\end{aligned}
$$

Now, y_{1} and y_{2} have the desired properties.
(ii) For the given ODE, $p(x)=1$ and $q(x)=-x$ both of which have radius of convergence $R=\infty$. Hence, both y_{1} and y_{2} have radius of convergence $R=\infty$.
7. ($\mathbf{T})$ Consider the equation $\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0$.
(i) Find its general solution in the form $y=a_{0} y_{1}(x)+a_{1} y_{2}(x)$, where $y_{1}(x)$ and $y_{2}(x)$ are power series.
(ii) Find the radius of convergence for $y_{1}(x)$ and $y_{2}(x)$.

Solution:

(i) Substituting $y=\sum_{n=0} a_{n} x^{n}$ into $\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0$, we get

$$
\sum_{n=0}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=2} n(n-1) a_{n} x^{n}-\sum_{n=1} 4 n a_{n} x^{n}+\sum_{n=0} 6 a_{n} x^{n}=0
$$

Rearranging we find
$\left(2 a_{2}+6 a_{0}\right)+\left(6 a_{3}-4 a_{1}+6 a_{1}\right) x+\sum_{n=2}\left[(n+2)(n+1) a_{n+2}+n(n-1) a_{n}-4 n a_{n}+6 a_{n}\right] x^{n}=0$
Hence,

$$
a_{2}=-3 a_{0}, a_{3}=-\frac{a_{1}}{3}, a_{n+2}=-\frac{(n-2)(n-3)}{(n+1)(n+2)} a_{n}, \quad n \geq 2 .
$$

Iterating we get

$$
a_{2}=-3 a_{0}, a_{3}=-\frac{a_{1}}{3}, a_{n}=0, \quad n \geq 4 .
$$

Thus,

$$
\begin{aligned}
y & =a_{0}\left(1-3 x^{2}\right)+a_{1}\left(x-\frac{x^{3}}{3}\right) \\
& =a_{0} y_{1}(x)+a_{1} y_{2}(x)
\end{aligned}
$$

(ii) Both the series are polynomials and hence converges for all x. Note that here $p(x)=-4 x /\left(1+x^{2}\right)$ and $q(x)=6 /\left(1+x^{2}\right)$ are analytic at $x=0$ and have radius convergence $R=1$. Thus the existence and uniqueness theorem for the ordinary point guarantees existence of unique solution in $|x|<1$ but actually we find the existence of unique solution for all x.
8. Find the first three non zero terms in the power series solution of the IVP

$$
y^{\prime \prime}-(\sin x) y=0, \quad y(\pi)=1, \quad y^{\prime}(\pi)=0 .
$$

Solution: As the initial values are given at π, the expansion should be about $x_{0}=\pi$. The best way to do this is to first shift x_{0} to 0 . To do this, let $t=x-\pi$. Then $t_{0}=x_{0}-\pi=0$. The equation becomes

$$
y^{\prime \prime}+(\sin t) y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

Assuming $y=\sum a_{n} t^{n}$ and using $\sin t=\sum \frac{(-1)^{n}}{(2 n+1)!} t^{2 n+1}$ we get

$$
0=y^{\prime \prime}+(\sin t) y=2 a_{2}+\left(6 a_{3}+a_{0}\right) t+\left(12 a_{4}+a_{1}\right) t^{2}+\left(20 a_{5}+a_{2}-a_{0} / 6\right)+\cdots
$$

From initial conditions $a_{0}=1, a_{1}=0$. So $a_{2}=0, a_{3}=-1 / 6, a_{4}=0, a_{5}=1 / 120$.
9. Using Rodrigues' formula for $P_{n}(x)$, show that
(T)(i) $P_{n}(-x)=(-1)^{n} P_{n}(x)$
(ii) $P_{n}^{\prime}(-x)=(-1)^{n+1} P_{n}^{\prime}(x)$
(iii) $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{m n}$
(iv) $\int_{-1}^{1} x^{m} P_{n}(x) d x=0 \quad$ if $n>m$.

Solution:

(i) Replace x in $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right)$ by $-z$ to get (using $d / d x=-d / d z$)

$$
P_{n}(-z)=(-1)^{n} \frac{1}{2^{n} n!} \frac{d^{n}}{d z^{n}}\left(\left(z^{2}-1\right)^{n}\right)=(-1)^{n} P_{n}(z)
$$

(ii) By differentiating (i) w.r.t. x, we get

$$
-P_{n}^{\prime}(-x)=(-1)^{n} P_{n}(x) \Longrightarrow P_{n}^{\prime}(x)=(-1)^{n+1} P_{n}(x)
$$

(iii) Let $f(x)$ be any function with at least n continuous derivatives in $[-1,1]$. Consider the integral

$$
I=\int_{-1}^{1} f(x) P_{n}(x) d x=\frac{1}{2^{n} n!} \int_{-1}^{1} f(x) \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} d x
$$

Repetition of integration by parts repeatedly gives

$$
I=(-1)^{n} \frac{1}{2^{n} n!} \int_{-1}^{1} f^{(n)}(x)\left(x^{2}-1\right)^{n} d x
$$

If $m \neq n$, without any loss of generality we take $f=P_{m}, m<n$ and then $f^{(n)}(x)=0$ (since P_{m} is a polynomial of degree $m<n$) and thus $I=0$.

If $f(x)=P_{n}(x)$, then

$$
f^{(n)}(x)=\frac{1}{2^{n} n!} \frac{d^{2 n}}{d x^{2 n}}\left(x^{2}-1\right)^{n}=\frac{2 n!}{2^{n} n!} .
$$

Thus,

$$
I=\frac{2 n!}{\left.2^{2 n}(n!)^{2}\right)} \int_{-1}^{1}\left(1-x^{2}\right)^{n} d x=\frac{2(2 n!)}{\left.2^{2 n}(n!)^{2}\right)} \int_{0}^{1}\left(1-x^{2}\right)^{n} d x .
$$

Substitute $x=\sin \theta$ to get

$$
I=\frac{2(2 n!)}{\left.2^{2 n}(n!)^{2}\right)} \int_{0}^{\pi / 2} \cos ^{2 n+1} \theta d \theta=\frac{2(2 n!)}{2^{2 n}(n!)^{2}} J_{n}
$$

Using integration by parts

$$
\int \cos ^{2 n+1} d \theta=\sin \theta \cos ^{2 n} \theta+2 n \int \sin ^{2} \theta \cos ^{2 n-1} \theta d \theta=\sin \theta \cos ^{2 n} \theta+2 n \int\left(1-\cos ^{2} \theta\right) \cos ^{2 n-1} \theta d \theta
$$

This leads to

$$
J_{n}=\int_{0}^{\pi / 2} \cos ^{2 n+1} \theta d \theta=\frac{2 n}{2 n+1} J_{n-1}=\frac{2 n}{2 n+1} \frac{2(n-1)}{2 n-1} \cdots \frac{2}{3} J_{0}
$$

Now

$$
J_{0}=\int_{0}^{\pi / 2} \cos \theta d \theta=1
$$

Hence,

$$
J_{n}=\frac{2^{n} n!}{1 \cdot 3 \cdot 5 \cdots(2 n-1) \cdot(2 n+1)}=\frac{2^{2 n}(n!)^{2}}{(2 n!)(2 n+1)}
$$

Thus,

$$
I=\frac{2}{2 n+1}
$$

(iv) Follows from (iii) by taking $f(x)=x^{m}$ where $m<n$.
10. Expand the following functions in terms of Legendre polynomials over $[-1,1]$:
(i) $f(x)=x^{3}+x+1 \quad$ (T)(ii) $f(x)=\left\{\begin{array}{lll}0 & \text { if } & -1 \leq x<0 \\ x & \text { if } & 0 \leq x \leq 1\end{array} \quad\right.$ (first three nonzero terms)

Solution:

We know from Legendre Expansion Theorem that any continuous function $f(x)$ on $[-1,1]$, has Legendre series expansion as

$$
f(x)=\sum_{n=0} a_{n} P_{n}(x), \quad \text { with } a_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x ; \quad x \in[-1,1] .
$$

(See N. N. Lebedev, Special Functions and Their Applications, pp. 53-58, PrenticeHall, Englewood Cliffs, N.J., 1965.)
(i) We can use the above formula to find a_{n}. Alternately, we know that

$$
P_{0}(x), P_{1}(x)=x, P_{3}(x)=\frac{5 x^{3}-3 x}{2} .
$$

So we find

$$
1=P_{0}(x), \quad x=P_{1}(x), \quad x^{3}=\frac{2 P_{3}(x)+3 P_{1}(x)}{5} .
$$

Hence,

$$
f(x)=P_{0}(x)+P_{1}(x)+\frac{2 P_{3}(x)+3 P_{1}(x)}{5}=P_{0}(x)+\frac{8}{5} P_{1}(x)+\frac{2}{5} P_{3}(x)
$$

(Remark: Note that, if f has derivatives of all order then, $\int_{-1}^{1} f(x) P_{n}(x) d x=\frac{(-1)^{n}}{2^{n} n!} \int_{-1}^{1} f^{(n)}(x)\left(x^{2}-\right.$ $1)^{n} d x$. In particular, if $f(x)$ is a polynomial of degree n then $a_{m}=0$ for all $m>n$.)
(ii) Using the above formula,

$$
a_{0}=\frac{1}{4}, a_{1}=\frac{1}{2}, a_{2}=\frac{5}{16} .
$$

Thus,

$$
f(x)=\frac{1}{4} P_{0}(x)+\frac{1}{2} P_{1}(x)+\frac{5}{16} P_{2}(x)+\cdots
$$

11. Suppose $m>n$. Show that $\int_{-1}^{1} x^{m} P_{n}(x) d x=0$ if $m-n$ is odd. What happens if $m-n$ is even?

Solution:

Proceeding as in 4(iii), we get (taking $f(x)=x^{m}$)

$$
I=\int_{-1}^{1} x^{m} P_{n}(x) d x=\frac{m(m-1) \cdots(m-n+1)}{2^{n} n!} \int_{-1}^{1} x^{m-n}\left(1-x^{2}\right)^{n} d x
$$

If $m-n$ is odd, then $I=0$, since the integrand then becomes an odd function. If $m-n=2 k$ is even, then

$$
\begin{aligned}
I & =\frac{2 m(m-1) \cdots(m-n+1)}{2^{n} n!} \int_{0}^{\pi / 2} \sin ^{2 k} \theta \cos ^{2 n+1} \theta d \theta \\
& =\frac{2 m(m-1) \cdots(m-n+1)}{2^{n} n!} I_{k, n}
\end{aligned}
$$

where

$$
I_{k, n}=\int_{0}^{\pi / 2} \sin ^{2 k} \theta \cos ^{2 n+1} \theta d \theta=\frac{2 n}{2 k+1} I_{k+1, n-1}
$$

By repeated application of this relation, the last subscript becomes zero. Then the resulting integral can be evaluated by substitution:

$$
I_{k+n, 0}=\int_{0}^{\pi / 2} \sin ^{2(k+n)} \theta \cos \theta d \theta=\frac{1}{2(k+n)+1}
$$

Thus,

$$
\begin{aligned}
I_{k, n} & =\frac{2 n \cdot 2(n-1) \cdots 2.1}{(2 k+1)(2 k+3) \cdots\{2(k+n-1)+1\}} I_{k+n, 0} \\
& =\frac{2^{n} n!}{(2 k+1)(2 k+3) \cdots\{2(k+n-1)+1\}\{2(k+n)+1\}}
\end{aligned}
$$

Substituting $I_{k, n}$ into the expression of I gives the value of the integral when $m-n$ is even.
12. The function on the left side of

$$
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

is called the generating function of the Legendre polynomial P_{n}. Assuming this, show that
(T)(i) $(n+1) P_{n+1}(x)-(2 n+1) x P_{n}(x)+n P_{n-1}(x)=0$
(ii) $n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)$
(iii) $P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(n+1) P_{n}(x) \quad$;
(iv) $P_{n}(1)=1, P_{n}(-1)=(-1)^{n}$
(v) $P_{0}(0)=1, P_{2 n+1}(0)=0, P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-1)}{2^{n} n!}, \quad n \geq 1$

Solution:
(i) Differentiating both sides w.r.t. t, we get

$$
\frac{x-t}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\sum_{n=1} n P_{n}(x) t^{n-1}
$$

which gives

$$
(x-t) \sum_{n=0} P_{n}(x) t^{n}=\left(1-2 x t+t^{2}\right) \sum_{n=0}(n+1) P_{n+1}(x) t^{n}
$$

Equating the coefficient of t^{n} from both sides, we get

$$
x P_{n}-P_{n-1}=(n+1) P_{n+1}-2 x n P_{n}+(n-1) P_{n-1},
$$

which on simplification yields

$$
(n+1) P_{n+1}(x)-(2 n+1) x P_{n}(x)+n P_{n-1}(x)=0
$$

(ii) Differentiating both sides w.r.t. x, we get

$$
\frac{t}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\sum_{n=0} P_{n}^{\prime}(x) t^{n}
$$

which gives

$$
\left(1-2 x t+t^{2}\right) \sum_{n=0} P_{n}^{\prime} t^{n}=t \sum_{n=0} P_{n} t^{n}
$$

Equating the coefficient of t^{n} from both sides, we get

$$
P_{n}^{\prime}-2 x P_{n-1}^{\prime}+P_{n-2}^{\prime}=P_{n-1}
$$

which on replacing n by $n+1$ gives

$$
\begin{equation*}
P_{n+1}^{\prime}-2 x P_{n}^{\prime}-P_{n}+P_{n-1}^{\prime}=0 \tag{}
\end{equation*}
$$

Differentiating the relation in (i) w.r.t. x, we get

$$
\begin{equation*}
(n+1) P_{n+1}^{\prime}-(2 n+1)\left(P_{n}+x P_{n}^{\prime}\right)+n P_{n-1}^{\prime}=0 \tag{**}
\end{equation*}
$$

Elimination of P_{n+1}^{\prime} between (*) and (**) gives

$$
n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)
$$

(iii) Proceeding as in (ii) we arrive in relation given in $\left(^{*}\right)$ and $\left({ }^{* *}\right)$. Eliminate p_{n-1}^{\prime} between $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ to find

$$
P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(n+1) P_{n}(x)
$$

(iv) Substituting $x=1$ into the relation we find

$$
\sum_{n=0} P_{n}(1) t^{n}=\frac{1}{1-t}=\sum_{n=0} t^{n}
$$

Equating coefficients of t^{n}, we get $P_{n}(1)=1$.
Similarly, substituting $x=-1$ into the relation we find

$$
\sum_{n=0} P_{n}(-1) t^{n}=\frac{1}{1+t}=\sum_{n=0}(-1)^{n} t^{n}
$$

Equating coefficients of t^{n}, we get $P_{n}(-1)=(-1)^{n}$.
(v) Substitute $x=0$ into the relation we get

$$
\sum_{n=0} P_{n}(0) t^{n}=\frac{1}{\sqrt{1+t^{2}}}=1+\sum_{n=1} \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right) \cdots\left(-\frac{1}{2}-n+1\right)}{n!} t^{2 n}
$$

or

$$
P_{0}(0)+\sum_{n=1} P_{2 n}(0) t^{2 n}+\sum_{n=1} P_{2 n+1}(0) t^{2 n+1}=1+\sum_{n=1}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} n!} t^{2 n}
$$

Equating the coefficients of t^{n} we get

$$
P_{0}(0)=1, P_{2 n+1}(0)=0, P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2^{n} n!}, \quad n \geq 1
$$

