MTH102-ODE Assignment-6

1. (T) Consider f(x) = e 3 for x # 0 and f(0) = 0. Then:
(a) Calculate f', f”, f".

—1/22

(b) Prove derivative of e consists of sum of terms of similar form. Hence deduce

that f(™(z) consists of sum terms of the form m%efl/ ** for different ¢, p € N.

(c) Prove that

. Cc
ig%ﬁe 1/502:0? CapeN'

(d) Deduce that f™(0) = 0 for all n.
(e) Thus conclude that f is infinitely differentiable but f is not analytic at 0.

[Recall: A real valued function is said to be analytic at g if f(z) can be written as a
convergent power series Y a,(z — xo)" on |z — x9| < R for some R > 0. A function
is analytic on a domain (2 if it is analytic at each zy € 2. We know that any analytic
function is infinitely differentiable BUT there exists infinitely real differentiable functions

which are not analytic. |

Solution:
(a)
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Clearly, by induction, f™(z) consists of sum terms of the form e/ = for different
c,p e N

()
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d) Combining (b) and (c) we conclude that f™(0) = 0 for all n.
(e) If f(x) =>_ a,2™ on anbd of 0, then a,, = f™(0)/n! = 0. Hence f = 0 on a nbhd of
0. This is a contradiction. So f is not analytic at 0.

2. Prove that if f, g are analytic at xo and g(xo) # 0 then f/g is analytic at z.
Solution:
Assume f(z) =) an(x — z9)" and g(x) = > b,(x — o)™ with g(zg) = by # 0.
Claim: We can find ¢, € R such that f/g = > c,(x — z0)" i.e.

Z an(z — x0)" = Z b (z — x0)™ Z cr(x — o).



Equating coefficients of different x":

ag = bopcy = ¢y = ag/by.

a1 = bypcy + bicg = ¢ can be found using known value ofcy.

ag = bgcy + bicy + bocg = cocan be found using known values of ¢, ¢;.

Thus inductively we can solve for all ¢ s.

. (T)(i) Prove that zeros of an analytic function f(x), which is not identically zero, are
isolated points i.e. if xg is a zero of f(z) then there exists € > 0 such that f(x) # 0 for
all 0 < |z — 2| <e.

(T)(ii) Deduce that f,g analytic on an interval I and W(f,g) = 0 on I then f,g are

linearly dependent on I.

(Compare this with the result we have proved before: if W(y;,y2) = 0 and they are

solution of second order linear homogeneous equation, then y;, 3, are linearly dependent.)

Solution: (i) Write f(z) = >, < an(z — 20)" on |z — x| < R for some R > 0. Since a
power series can be differentiated term by term, we get nla, = f™(x,). Since f(zy) = 0,
we have ag = 0. Since f is not zero function there exists m such that a,, # 0. Choose m
to be the least such that a,, # 0. Then f(z) = a,(x — 20)™ + @i (T — 20)™ M + -+ =
(x—20)" [am~+ams1(x—20)+- - - | = (x—20)™g(x) where g is analytic and g(z¢) = a,, # 0.
By continuity of g, there exists exists € > 0 such that g(z) # 0 for all |z — x| < €. Hence
f(z) #0for all 0 < |z — 2| <e.

(ii) Given that f¢’ — f’g = 0 on an interval I. Since zeros of f are isolated points we can
choose an interval I’ C I such that f # 0 on I'. Then on I’, we have (fg' — f'g)/f* =0,
implies (¢g/f) = 0, imples g = ¢f on I'. Now h = g — cf is analytic on I and h is zero

on an interval I’ i.e. h has non isolated zero. Hence by (i), we must have h =0 on .

. Is xq is an ordinary point of the ODE? If so expand p(x), ¢(x) in power series about .
Find a minimum value for the radius of convergence of a power series solution about x.
(a) (x+1)y" —3zy + 2y, zo=1

(T)(b) (1 +z+2?)y" —3y=0, xzo=1.

Solution:

(a) Here p(z) = =3z /(x + 1), q(z) =2/(xz +1). Clearly xy = 1 is an ordinary point.
Now z/(z +1) = 2/2+2—1) = %Tl—n/z =1z -1+ 1)3[(1 — z)/2]" valid for
1 —2x| <2

The only singular point is x+ = —1. Thus the minimum radius of convergence of the
solution is the distance between xy = 1 and —1, which is 2.

(b) Here p(z) =0, ¢(zx)=—-3/(z* +z+1). Clearly 29 = 1 is an ordinary point.

The singular points are x = (—1 4 +/3i)/2. Thus the minimum radius of convergence of
the solution is the distance between zy = 1 and (—1 # v/34)/2, which is v/3.



Now fort =2 — 1
1 1 1
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valid for |(£2 + 3t)/3| < 1 that is [t| < /3.

. Locate and classify the singular points in the following:

(T)(i) 23z — 1)y —2(x — 1)y + 32y =0 (i) Bx +1)ay” —xy' +2y =0
Solution:

(i) The given ODE can be written as

2 3
" / —
Y x3y+x2(x—1)y70
Hence, x = 1 regular and x = 0 irregular singular points
(ii) The given ODE can be written as

1/ _ 1 y/+ 2
3r +1 z(3z + 1)

Yy y=0

Hence, both z = 0,2 = —1/3 are regular singular points
. Consider the equation y” + 3’ — xy = 0.

(i) Find the power series solutions y;(x) and yo(x) such that y;(0) = 1,4;(0) = 0 and
y2(0) = 0,45(0) = 1.

(ii) Find the radius of convergence for y;(x) and yo(z).

Solution:

(i) Substituting y = Y _,a,2" into y” +y' — zy = 0, we get

Z(n +2)(n + 1)ay 02" + Z(n + Dayp2™ — Z ap_12" =0

n=0 n=0 n=1

Rearranging, we find

(2az + a1) + Y [(n+2)(n + Dania + (0 + Danin — ana] 2" =0

n=1

Hence,
Qn4-1 ap—1
= = n>1.

2a9 + a1 =0, apyo = — + , =
S T 42 (n+)(n+2)

Iterating we get
az = —ay/2, a3 =a1/(2-3) +ao/(2-3), as =a1/(2-3-4) —ao/(2-3-4),- -

Thus,
1+ 3 rt . 20 n n 2 n 3 L r? 4P n
— a — a €r— — —
y 0 2.3 2.3.42.3.4-5 ! 2 "9.372.3.4 2.3.4.5
= aoyr(v) + aryz(x).




Now, y; and g2 have the desired properties.

(ii) For the given ODE, p(z) = 1 and ¢(x) = —z both of which have radius of convergence

R = oo. Hence, both y; and y, have radius of convergence R = oo.

. (T) Consider the equation (1 + z?)y” — 4xy’ + 6y = 0.

(i) Find its general solution in the form y = agyi(x) + a1y2(x), where y;(x) and yo(x)
are power series.

(ii) Find the radius of convergence for y;(x) and ys(z).

Solution:

(i) Substituting y = Y, _, a,z™ into (1 + 2?)y” — 4dzy’ + 6y = 0, we get

Z(n +2)(n+ Day22" + Zn(n — Daya"™ — Z4nanx” + Z 6a,x" =0
n=2 n=1 n=0

n=0

Rearranging we find

(2a2+6a0)+(6a3—4a1+6a1)x+z [(n+2)(n+ 1)api2 + n(n — 1)a, — 4na, + 6a,] 2" =0

n=2
Hence,
a n—2)(n —3)
as = —3ag, 3 = ——, Apio = — U, n>2
2 O T ik D (n +2)
[terating we get
as = —3ag, a3 =——,a, =0, n>4

Thus,

3
Yy = a0(1—3x2)+a1(:€—§>
= aoy1 () + arya(v)

(ii) Both the series are polynomials and hence converges for all . Note that here
p(xr) = —4z/(1 + z%) and ¢(x) = 6/(1 + x?) are analytic at * = 0 and have radius
convergence R = 1. Thus the existence and uniqueness theorem for the ordinary point
guarantees existence of unique solution in |z| < 1 but actually we find the existence of

unique solution for all x.

. Find the first three non zero terms in the power series solution of the IVP
y" — (sinz)y =0, y(r)=1, y'(m)=0.

Solution: As the initial values are given at 7, the expansion should be about zy = 7.
The best way to do this is to first shift zy to 0. To do this, let ¢ = x — 7. Then

to = xo — ™ = 0. The equation becomes

y"' + (sint)y =0, y(0)=1, y'(0)=0.



Assuming y = > a,t" and using sint = ) (;Bln)!t%“ we get

0 =19 + (sint)y = 2as + (6as + ao)t + (12a4 + a1)t* + (20as + ay — ag/6) + - - - .

From initial conditions ag = 1,a; = 0. So az = 0,a3 = —1/6,a4 = 0, a5 = 1/120.

. Using Rodrigues’ formula for P,(z), show that

(T)(i) Pu(=2) = (=1)"Pu(x) (ii) Py(—x) = (=1)""' P} (z)
(iii) /_1 P,(x)P,(x)dx = %&m (iv) /_1 2" Py(x)dz =0 ifn>m.
Solution:

L

(i) Replace x in P,(x) ((#> = 1)") by —z to get (using d/dz = —d/dz)

- 2nn! dzn
1 d°
2nn! dzm

Bu(=2) = (=1)"

((z* = 1)") = (=1)"Pu(2)
(ii) By differentiating (i) w.r.t. z, we get
—P(=2) = (-1)"Pu(z) = Py(x) = (=1)""" Py(2).

(iii) Let f(z) be any function with at least n continuous derivatives in [—1, 1]. Consider
the integral

I /_tf(:z:)Pn(x) i — /_llf(x)d—n@? 1) da

2mn)! dx™
Repetition of integration by parts repeatedly gives

1
21|

I=(-1"

/1 O () (2® — 1) da.

If m # n, without any loss of generality we take f = P,,, m < n and then f™(z) =0

(since P, is a polynomial of degree m < n) and thus I = 0.
If f(x) = P,(z), then

1 d* 2n!
(n) _ 2 1)? = )
@) 2nn) dx2n (x ) 2nn!

Thus,
- 2n! ! . ,1'2 "y — 2(271') ! . 1,2 " dx
1= gy [ 0= = gy [ 0

Substitute x = sinf to get

2(2n!)
.

2(2n|) /2 2n+1 o
) /0 COS 9(19 = W

- 22n ()2

Using integration by parts

/(:082”+1 df = sin 0 cos®™ 0-+2n / sin? @ cos® ! 0 df = sin 6 cos®™ §4-2n /(1—0052 6) cos®™ 1 0 df



10.

This leads to

/2 2 o 2n—1) 2
Jn = / cos? 19 dp = " J, 1= n_2n—1) .
0

2n+1 2n+1 2n—1 3
Now
w/2
JO—/ cosfdb = 1.
0
Hence,
7 2"n! o 22(nl)?
" 1-3-5--(2n—1)-(2n+1)  (2nhH)(2n +1)
Thus,
2
o+l

(iv) Follows from (iii) by taking f(x) = 2™ where m < n.
Expand the following functions in terms of Legendre polynomials over [—1, 1]:

(i) fz) =2’ + 2 +1 (T)(ii)f(x):{o if —1<z<0

_ (first three nonzero
x if 0<zx<1
terms)

Solution:

We know from Legendre Expansion Theorem that any continuous function f(x) on

[—1, 1], has Legendre series expansion as
2n+1 (!
= ZanPn(a:), with a,, = n; / f(x)Py(x)dx; xe€[-1,1].
n=0 -1

( See N. N. Lebedev, Special Functions and Their Applications, pp. 53 — 58, Prentice-
Hall, Englewood Cliffs, N.J. , 1965.)

(i) We can use the above formula to find a,. Alternately, we know that

Pfa), Pi(x) = 2, Py(x) = 220
So we find
1:P0<£IZ'>, Zﬁ:Pl(l'), :Ij'3: 2P3([E)-é—3pl($)
Hence,
() = Puta) + Pila) + IS oy 1 Bpyay 4 2Ry

(Remark: Note that, if f has derivatives of all order then, f_ll f(x)Py(x)dx = (inn, f f

1)"dz. In particular, if f(z) is a polynomial of degree n then a,, = 0 for all m > n.)

(ii) Using the above formula,

Thus,



11.

12.

1
Suppose m > n. Show that / 2™ P, (z)dxr = 0if m —n is odd. What happens if m —n

-1
is even?
Solution:
Proceeding as in 4(iii), we get (taking f(z) = ™)
1 —1)--- — 1 1
[:/ ™ P, () dx = mm=1)---(m=n+ >/ g™ (1 — 2" dx

1 2nn! 1

If m — n is odd, then I = 0, since the integrand then becomes an odd function.

If m —n = 2k is even, then

— 1) (m— /2
I = 2m(m —1) - (m —n+1) / sin* § cos®™ 1 6 do
0

2!
2m(m —1)---(m—n+1)
= Ikn
21! ’
where
/2 2n
Lin = /0 sin?* 6 cos?™ 1 0 df = mlkﬂ,n—l

By repeated application of this relation, the last subscript becomes zero. Then the

resulting integral can be evaluated by substitution:

1

/2
Liino = sin?* ) g cosOdh) = ———————
k+n,0 /0 2(]{ +TL> +1

Thus,

2n-2(n—1)---2.1 ;
(2k+1)(2k+3)-- - {2(k+n—1)+ 1} k41,0
2"n!
(2k+1)(2k+3) - {2(k +n— 1) + 1H{2(k+n) + 1}

Ik,n =

Substituting I}, into the expression of I gives the value of the integral when m — n is

even.

The function on the left side of

1 o0
m = nz:; P,(x)t"

is called the generating function of the Legendre polynomial P,. Assuming this, show

that

(T)(i) (n+1)Pyy1(z) — 2n+1D)zP,(z)+nP,_1(z) =0 (i) nP,(z) = zP.(x)—P._,(x)

(iii) Pry(z) —aBy(z) = (n+ 1) Pu(z) (iv) Fu(1) = 1, Fu(=1) = (=1)"

(V) PO(O) = 17 P2n+1(0) = Oa PQn(O) = (_1)n

Solution:



(i) Differentiating both sides w.r.t. t, we get

T —1 1
(1 — 2at + 2)372 Z”P )t
which gives

(=) Pu(a)t" = (1= 22t +°) Y (n+ 1) Py ()"

n=0 n=0

Equating the coefficient of " from both sides, we get
xP, — P,y =(n+1)Py1 —22nP, + (n—1)P,_4,
which on simplification yields

(n+1)Pi1(x) — 2n+ 1)zP,(z) + nP,—1(z) =0

(ii) Differentiating both sides w.r.t. =, we get

/
(1—2a:t+t2 )3/2 ZP

which gives
(L—2at+%)) Pit" =ty Ppt"
n=0 n=0

Equating the coefficient of " from both sides, we get

which on replacing n by n + 1 gives

P, — 2P — P, + P, =0. ()
Differentiating the relation in (i) w.r.t. x, we get

(n+ 1P, — (2n+1) (Pn + xPé) P =0. (+%)

Elimination of P, , between (*) and (**) gives

nP,(x) = 2P, (z) — F, ()

(iii) Proceeding as in (ii) we arrive in relation given in (*) and (**). Eliminate p/, ;
between (*) and (**) to find

Fr(@) —zP(x) = (n+ 1) Py(x)

(iv) Substituting = 1 into the relation we find

n 1 n



Equating coefficients of t", we get P, (1) = 1.

Similarly, substituting x = —1 into the relation we find

> P(-1)t" = %H => (-1t

Equating coefficients of ", we get P,(—1) = (—1)".

(v) Substitute z = 0 into the relation we get

ZOP”(O) 1+t2 Z 1) (_5_2)".(_§_n+1)t2n

or

1-3-5---(2n—1
0)+ 3 PO + 3 a0 = 14 Y-yt 220 B0 D
n=1 n=1 n=1 :

Equating the coefficients of " we get

Py(0) =1, Poyy1(0) =0, P,(0) = <_1)711 3.5 (2n — 1)




