
MTH102-ODE Assignment-6

1. (T) Consider f(x) = e−
1
x2 for x 6= 0 and f(0) = 0. Then:

(a) Calculate f ′, f ′′, f ′′′.

(b) Prove derivative of c
xp
e−1/x

2
consists of sum of terms of similar form. Hence deduce

that f (n)(x) consists of sum terms of the form c
xp
e−1/x

2
for different c, p ∈ N.

(c) Prove that

lim
x→0

c

xp
e−1/x

2

= 0, c, p ∈ N.

(d) Deduce that f (n)(0) = 0 for all n.

(e) Thus conclude that f is infinitely differentiable but f is not analytic at 0.

[Recall: A real valued function is said to be analytic at x0 if f(x) can be written as a

convergent power series
∑
an(x − x0)

n on |x − x0| < R for some R > 0. A function

is analytic on a domain Ω if it is analytic at each x0 ∈ Ω. We know that any analytic

function is infinitely differentiable BUT there exists infinitely real differentiable functions

which are not analytic. ]

Solution:

(a)

f ′(x) =
2

x3
e−1/x

2

, f ′′(x) =
4

x6
e−1/x

2− 6

x4
e−1/x

2

, f ′′′(x) =
8

x9
e−1/x

2− 36

x7
e−1/x

2

+
24

x5
e−1/x

2

.

(b)
d

dx
(
c

xp
e−1/x

2

) = − pc

xp+1
e−1/x

2

+
2c

xp+3
e−1/x

2

.

Clearly, by induction, f (n)(x) consists of sum terms of the form c
xp
e−1/x

2
for different

c, p ∈ N.

(c)

lim
x→0

c

xp
e−1/x

2

= lim
u→∞

cupe−u
2

= lim
u→∞

cup

eu2
= 0. c, p ∈ N.

(d) Combining (b) and (c) we conclude that f (n)(0) = 0 for all n.

(e) If f(x) =
∑
anx

n on a nbd of 0, then an = f (n)(0)/n! = 0. Hence f = 0 on a nbd of

0. This is a contradiction. So f is not analytic at 0.

2. Prove that if f, g are analytic at x0 and g(x0) 6= 0 then f/g is analytic at x0.

Solution:

Assume f(x) =
∑
an(x− x0)n and g(x) =

∑
bn(x− x0)n with g(x0) = b0 6= 0.

Claim: We can find cn ∈ R such that f/g =
∑
cn(x− x0)n i.e.∑

an(x− x0)n =
∑

bm(x− x0)m
∑

ck(x− x0)k.



Equating coefficients of different xn:

a0 = b0c0 =⇒ c0 = a0/b0.

a1 = b0c1 + b1c0 =⇒ c1 can be found using known value ofc0.

a2 = b0c2 + b1c1 + b2c0 =⇒ c2can be found using known values of c0, c1.

Thus inductively we can solve for all c′ks.

3. (T)(i) Prove that zeros of an analytic function f(x), which is not identically zero, are

isolated points i.e. if x0 is a zero of f(x) then there exists ε > 0 such that f(x) 6= 0 for

all 0 < |x− x0| < ε.

(T)(ii) Deduce that f, g analytic on an interval I and W (f, g) = 0 on I then f, g are

linearly dependent on I.

(Compare this with the result we have proved before: if W (y1, y2) = 0 and they are

solution of second order linear homogeneous equation, then y1, y2 are linearly dependent.)

Solution: (i) Write f(x) =
∑

n≥0 an(x− x0)n on |x− x0| < R for some R > 0. Since a

power series can be differentiated term by term, we get n!an = f (n)(x0). Since f(x0) = 0,

we have a0 = 0. Since f is not zero function there exists m such that am 6= 0. Choose m

to be the least such that am 6= 0. Then f(x) = am(x− x0)m + am+1(x− x0)m+1 + · · · =
(x−x0)m[am+am+1(x−x0)+· · · ] = (x−x0)mg(x) where g is analytic and g(x0) = am 6= 0.

By continuity of g, there exists exists ε > 0 such that g(x) 6= 0 for all |x−x0| < ε. Hence

f(x) 6= 0 for all 0 < |x− x0| < ε.

(ii) Given that fg′−f ′g = 0 on an interval I. Since zeros of f are isolated points we can

choose an interval I ′ ⊂ I such that f 6= 0 on I ′. Then on I ′, we have (fg′− f ′g)/f 2 = 0,

implies (g/f)′ = 0, imples g = cf on I ′. Now h = g − cf is analytic on I and h is zero

on an interval I ′ i.e. h has non isolated zero. Hence by (i), we must have h = 0 on I.

4. Is x0 is an ordinary point of the ODE? If so expand p(x), q(x) in power series about x0.

Find a minimum value for the radius of convergence of a power series solution about x0.

(a) (x+ 1)y′′ − 3xy′ + 2y, x0 = 1

(T)(b) (1 + x+ x2)y′′ − 3y = 0, x0 = 1.

Solution:

(a) Here p(x) = −3x/(x+ 1), q(x) = 2/(x+ 1). Clearly x0 = 1 is an ordinary point.

Now x/(x + 1) = x/(2 + x − 1) = x
2

1
1+(x−1)/2 = 1

2
(x − 1 + 1)

∑
[(1 − x)/2]n valid for

|1− x| < 2.

The only singular point is x = −1. Thus the minimum radius of convergence of the

solution is the distance between x0 = 1 and −1, which is 2.

(b) Here p(x) = 0, q(x) = −3/(x2 + x+ 1). Clearly x0 = 1 is an ordinary point.

The singular points are x = (−1±
√

3i)/2. Thus the minimum radius of convergence of

the solution is the distance between x0 = 1 and (−1±
√

3i)/2, which is
√

3.



Now for t = x− 1

1

x2 + x+ 1
=

1

3 + 3t+ t2
=

1

3(1 + [t2 + 3t)/3])
=

1

3

∑
[−(t2 + 3t)/3]n

valid for |(t2 + 3t)/3| < 1 that is |t| <
√

3.

5. Locate and classify the singular points in the following:

(T)(i) x3(x− 1)y′′ − 2(x− 1)y′ + 3xy = 0 (ii) (3x+ 1)xy′′ − xy′ + 2y = 0

Solution:

(i) The given ODE can be written as

y′′ − 2

x3
y′ +

3

x2(x− 1)
y = 0

Hence, x = 1 regular and x = 0 irregular singular points

(ii) The given ODE can be written as

y′′ − 1

3x+ 1
y′ +

2

x(3x+ 1)
y = 0

Hence, both x = 0, x = −1/3 are regular singular points

6. Consider the equation y′′ + y′ − xy = 0.

(i) Find the power series solutions y1(x) and y2(x) such that y1(0) = 1, y′1(0) = 0 and

y2(0) = 0, y′2(0) = 1.

(ii) Find the radius of convergence for y1(x) and y2(x).

Solution:

(i) Substituting y =
∑

n=0 anx
n into y′′ + y′ − xy = 0, we get∑

n=0

(n+ 2)(n+ 1)an+2x
n +

∑
n=0

(n+ 1)an+1x
n −

∑
n=1

an−1x
n = 0

Rearranging, we find

(2a2 + a1) +
∑
n=1

[(n+ 2)(n+ 1)an+2 + (n+ 1)an+1 − an−1]xn = 0

Hence,

2a2 + a1 = 0, an+2 = − an+1

n+ 2
+

an−1
(n+ 1)(n+ 2)

, n ≥ 1.

Iterating we get

a2 = −a1/2, a3 = a1/(2 · 3) + a0/(2 · 3), a4 = a1/(2 · 3 · 4)− a0/(2 · 3 · 4), · · · .

Thus,

y = a0

[
1 +

x3

2 · 3
− x4

2 · 3 · 4
+

x5

2 · 3 · 4 · 5
+ · · ·

]
+ a1

[
x− x2

2
+

x3

2 · 3
+

x4

2 · 3 · 4
− 4x5

2 · 3 · 4 · 5
+ · · ·

]
= a0y1(x) + a1y2(x).



Now, y1 and y2 have the desired properties.

(ii) For the given ODE, p(x) = 1 and q(x) = −x both of which have radius of convergence

R =∞. Hence, both y1 and y2 have radius of convergence R =∞.

7. (T) Consider the equation (1 + x2)y′′ − 4xy′ + 6y = 0.

(i) Find its general solution in the form y = a0y1(x) + a1y2(x), where y1(x) and y2(x)

are power series.

(ii) Find the radius of convergence for y1(x) and y2(x).

Solution:

(i) Substituting y =
∑

n=0 anx
n into (1 + x2)y′′ − 4xy′ + 6y = 0, we get∑

n=0

(n+ 2)(n+ 1)an+2x
n +

∑
n=2

n(n− 1)anx
n −

∑
n=1

4nanx
n +

∑
n=0

6anx
n = 0

Rearranging we find

(2a2+6a0)+(6a3−4a1+6a1)x+
∑
n=2

[(n+ 2)(n+ 1)an+2 + n(n− 1)an − 4nan + 6an]xn = 0

Hence,

a2 = −3a0, a3 = −a1
3
, an+2 = −(n− 2)(n− 3)

(n+ 1)(n+ 2)
an, n ≥ 2.

Iterating we get

a2 = −3a0, a3 = −a1
3
, an = 0, n ≥ 4.

Thus,

y = a0
(
1− 3x2

)
+ a1

(
x− x3

3

)
= a0y1(x) + a1y2(x)

(ii) Both the series are polynomials and hence converges for all x. Note that here

p(x) = −4x/(1 + x2) and q(x) = 6/(1 + x2) are analytic at x = 0 and have radius

convergence R = 1. Thus the existence and uniqueness theorem for the ordinary point

guarantees existence of unique solution in |x| < 1 but actually we find the existence of

unique solution for all x.

8. Find the first three non zero terms in the power series solution of the IVP

y′′ − (sinx)y = 0, y(π) = 1, y′(π) = 0.

Solution: As the initial values are given at π, the expansion should be about x0 = π.

The best way to do this is to first shift x0 to 0. To do this, let t = x − π. Then

t0 = x0 − π = 0. The equation becomes

y′′ + (sin t)y = 0, y(0) = 1, y′(0) = 0.



Assuming y =
∑
ant

n and using sin t =
∑ (−1)n

(2n+1)!
t2n+1 we get

0 = y′′ + (sin t)y = 2a2 + (6a3 + a0)t+ (12a4 + a1)t
2 + (20a5 + a2 − a0/6) + · · · .

From initial conditions a0 = 1, a1 = 0. So a2 = 0, a3 = −1/6, a4 = 0, a5 = 1/120.

9. Using Rodrigues’ formula for Pn(x), show that

(T)(i) Pn(−x) = (−1)nPn(x) (ii) P ′n(−x) = (−1)n+1P ′n(x)

(iii)

∫ 1

−1
Pn(x)Pm(x) dx =

2

2n+ 1
δmn (iv)

∫ 1

−1
xmPn(x) dx = 0 if n > m.

Solution:

(i) Replace x in Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
by −z to get (using d/dx = −d/dz)

Pn(−z) = (−1)n
1

2nn!

dn

dzn
(
(z2 − 1)n

)
= (−1)nPn(z)

(ii) By differentiating (i) w.r.t. x, we get

−P ′n(−x) = (−1)nPn(x) =⇒ P ′n(x) = (−1)n+1Pn(x).

(iii) Let f(x) be any function with at least n continuous derivatives in [−1, 1]. Consider

the integral

I =

∫ 1

−1
f(x)Pn(x) dx =

1

2nn!

∫ 1

−1
f(x)

dn

dxn
(x2 − 1)n dx.

Repetition of integration by parts repeatedly gives

I = (−1)n
1

2nn!

∫ 1

−1
f (n)(x)(x2 − 1)n dx.

If m 6= n, without any loss of generality we take f = Pm, m < n and then f (n)(x) = 0

(since Pm is a polynomial of degree m < n) and thus I = 0.

If f(x) = Pn(x), then

f (n)(x) =
1

2nn!

d2n

dx2n
(x2 − 1)n =

2n!

2nn!
.

Thus,

I =
2n!

22n(n!)2)

∫ 1

−1
(1− x2)n dx =

2(2n!)

22n(n!)2)

∫ 1

0

(1− x2)n dx.

Substitute x = sin θ to get

I =
2(2n!)

22n(n!)2)

∫ π/2

0

cos2n+1 θ dθ =
2(2n!)

22n(n!)2
Jn.

Using integration by parts∫
cos2n+1 dθ = sin θ cos2n θ+2n

∫
sin2 θ cos2n−1 θ dθ = sin θ cos2n θ+2n

∫
(1−cos2 θ) cos2n−1 θ dθ



This leads to

Jn =

∫ π/2

0

cos2n+1 θ dθ =
2n

2n+ 1
Jn−1 =

2n

2n+ 1

2(n− 1)

2n− 1
· · · 2

3
J0.

Now

J0 =

∫ π/2

0

cos θ dθ = 1.

Hence,

Jn =
2nn!

1 · 3 · 5 · · · (2n− 1) · (2n+ 1)
=

22n(n!)2

(2n!)(2n+ 1)

Thus,

I =
2

2n+ 1

(iv) Follows from (iii) by taking f(x) = xm where m < n.

10. Expand the following functions in terms of Legendre polynomials over [−1, 1]:

(i) f(x) = x3 + x+ 1 (T)(ii) f(x) =

{
0 if −1 ≤ x < 0

x if 0 ≤ x ≤ 1
(first three nonzero

terms)

Solution:

We know from Legendre Expansion Theorem that any continuous function f(x) on

[−1, 1], has Legendre series expansion as

f(x) =
∑
n=0

anPn(x), with an =
2n+ 1

2

∫ 1

−1
f(x)Pn(x) dx; x ∈ [−1, 1].

( See N. N. Lebedev, Special Functions and Their Applications, pp. 53 − 58, Prentice-

Hall, Englewood Cliffs, N.J. , 1965.)

(i) We can use the above formula to find an. Alternately, we know that

P0(x), P1(x) = x, P3(x) =
5x3 − 3x

2
.

So we find

1 = P0(x), x = P1(x), x3 =
2P3(x) + 3P1(x)

5
.

Hence,

f(x) = P0(x) + P1(x) +
2P3(x) + 3P1(x)

5
= P0(x) +

8

5
P1(x) +

2

5
P3(x)

(Remark: Note that, if f has derivatives of all order then,
∫ 1

−1 f(x)Pn(x)dx = (−1)n
2nn!

∫ 1

−1 f
(n)(x)(x2−

1)ndx. In particular, if f(x) is a polynomial of degree n then am = 0 for all m > n.)

(ii) Using the above formula,

a0 =
1

4
, a1 =

1

2
, a2 =

5

16
.

Thus,

f(x) =
1

4
P0(x) +

1

2
P1(x) +

5

16
P2(x) + · · ·



11. Suppose m > n. Show that

∫ 1

−1
xmPn(x) dx = 0 if m−n is odd. What happens if m−n

is even?

Solution:

Proceeding as in 4(iii), we get (taking f(x) = xm)

I =

∫ 1

−1
xmPn(x) dx =

m(m− 1) · · · (m− n+ 1)

2nn!

∫ 1

−1
xm−n(1− x2)n dx

If m− n is odd, then I = 0, since the integrand then becomes an odd function.

If m− n = 2k is even, then

I =
2m(m− 1) · · · (m− n+ 1)

2nn!

∫ π/2

0

sin2k θ cos2n+1 θ dθ

=
2m(m− 1) · · · (m− n+ 1)

2nn!
Ik,n

where

Ik,n =

∫ π/2

0

sin2k θ cos2n+1 θ dθ =
2n

2k + 1
Ik+1,n−1

By repeated application of this relation, the last subscript becomes zero. Then the

resulting integral can be evaluated by substitution:

Ik+n,0 =

∫ π/2

0

sin2(k+n) θ cos θ dθ =
1

2(k + n) + 1

Thus,

Ik,n =
2n · 2(n− 1) · · · 2.1

(2k + 1)(2k + 3) · · · {2(k + n− 1) + 1}
Ik+n,0

=
2nn!

(2k + 1)(2k + 3) · · · {2(k + n− 1) + 1}{2(k + n) + 1}

Substituting Ik,n into the expression of I gives the value of the integral when m − n is

even.

12. The function on the left side of

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x)tn

is called the generating function of the Legendre polynomial Pn. Assuming this, show

that

(T)(i) (n+1)Pn+1(x)− (2n+1)xPn(x)+nPn−1(x) = 0 (ii) nPn(x) = xP ′n(x)−P ′n−1(x)

(iii) P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x) ; (iv) Pn(1) = 1, Pn(−1) = (−1)n

(v) P0(0) = 1, P2n+1(0) = 0, P2n(0) = (−1)n
1 · 3 · 5 · · · · · · (2n− 1)

2nn!
, n ≥ 1

Solution:



(i) Differentiating both sides w.r.t. t, we get

x− t
(1− 2xt+ t2)3/2

=
∑
n=1

nPn(x)tn−1

which gives

(x− t)
∑
n=0

Pn(x)tn = (1− 2xt+ t2)
∑
n=0

(n+ 1)Pn+1(x)tn

Equating the coefficient of tn from both sides, we get

xPn − Pn−1 = (n+ 1)Pn+1 − 2xnPn + (n− 1)Pn−1,

which on simplification yields

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0

(ii) Differentiating both sides w.r.t. x, we get

t

(1− 2xt+ t2)3/2
=
∑
n=0

P ′n(x)tn

which gives

(1− 2xt+ t2)
∑
n=0

P ′n t
n = t

∑
n=0

Pnt
n

Equating the coefficient of tn from both sides, we get

P ′n − 2xP ′n−1 + P ′n−2 = Pn−1

which on replacing n by n+ 1 gives

P ′n+1 − 2xP ′n − Pn + P ′n−1 = 0. (*)

Differentiating the relation in (i) w.r.t. x, we get

(n+ 1)P ′n+1 − (2n+ 1)
(
Pn + xP ′n

)
+ nP ′n−1 = 0. (**)

Elimination of P ′n+1 between (*) and (**) gives

nPn(x) = xP ′n(x)− P ′n−1(x)

(iii) Proceeding as in (ii) we arrive in relation given in (*) and (**). Eliminate p′n−1
between (*) and (**) to find

P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x)

(iv) Substituting x = 1 into the relation we find∑
n=0

Pn(1)tn =
1

1− t
=
∑
n=0

tn



Equating coefficients of tn, we get Pn(1) = 1.

Similarly, substituting x = −1 into the relation we find∑
n=0

Pn(−1)tn =
1

1 + t
=
∑
n=0

(−1)ntn

Equating coefficients of tn, we get Pn(−1) = (−1)n.

(v) Substitute x = 0 into the relation we get

∑
n=0

Pn(0)tn =
1√

1 + t2
= 1 +

∑
n=1

(
−1

2

) (
−1

2
− 1
) (
−1

2
− 2
)
· · ·
(
−1

2
− n+ 1

)
n!

t2n

or

P0(0) +
∑
n=1

P2n(0)t2n +
∑
n=1

P2n+1(0)t2n+1 = 1 +
∑
n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

2nn!
t2n

Equating the coefficients of tn we get

P0(0) = 1, P2n+1(0) = 0, P2n(0) = (−1)n
1 · 3 · 5 · · · · · · (2n− 1)

2nn!
, n ≥ 1


