MTH102-ODE Assignment-6

1. (T) Consider $f(x)=e^{-\frac{1}{x^{2}}}$ for $x \neq 0$ and $f(0)=0$. Then:
(a) Calculate $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$.
(b) Prove derivative of $\frac{c}{x^{p}} e^{-1 / x^{2}}$ consists of sum of terms of similar form. Hence deduce that $f^{(n)}(x)$ consists of sum terms of the form $\frac{c}{x^{p}} e^{-1 / x^{2}}$ for different $c, p \in \mathbb{N}$.
(c) Prove that

$$
\lim _{x \rightarrow 0} \frac{c}{x^{p}} e^{-1 / x^{2}}=0, \quad c, p \in \mathbb{N}
$$

(d) Deduce that $f^{(n)}(0)=0$ for all n.
(e) Thus conclude that f is infinitely differentiable but f is not analytic at 0 .
[Recall: A real valued function is said to be analytic at x_{0} if $f(x)$ can be written as a convergent power series $\sum a_{n}\left(x-x_{0}\right)^{n}$ on $\left|x-x_{0}\right|<R$ for some $R>0$. A function is analytic on a domain Ω if it is analytic at each $x_{0} \in \Omega$. We know that any analytic function is infinitely differentiable BUT there exists infinitely real differentiable functions which are not analytic.]
2. Prove that if f, g are analytic at x_{0} and $g\left(x_{0}\right) \neq 0$ then f / g is analytic at x_{0}.
3. (T)(i) Prove that zeros of an analytic function $f(x)$, which is not identically zero, are isolated points i.e. if x_{0} is a zero of $f(x)$ then there exists $\epsilon>0$ such that $f(x) \neq 0$ for all $0<\left|x-x_{0}\right|<\epsilon$.
(T)(ii) Deduce that f, g analytic on an interval I and $W(f, g)=0$ on I then f, g are linearly dependent on I.
(Compare this with the result we have proved before: if $W\left(y_{1}, y_{2}\right)=0$ and they are solution of second order linear homogeneous equation, then y_{1}, y_{2} are linearly dependent.)
4. Locate and classify the singular points in the following:
(T)(i) $x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0$
(ii) $(3 x+1) x y^{\prime \prime}-x y^{\prime}+2 y=0$
5. Consider the equation $y^{\prime \prime}+y^{\prime}-x y=0$.
(i) Find the power series solutions $y_{1}(x)$ and $y_{2}(x)$ such that $y_{1}(0)=1, y_{1}^{\prime}(0)=0$ and $y_{2}(0)=0, y_{2}^{\prime}(0)=1$.
(ii) Find the radius of convergence for $y_{1}(x)$ and $y_{2}(x)$.
6. (T) Consider the equation $\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0$.
(i) Find its general solution in the form $y=a_{0} y_{1}(x)+a_{1} y_{2}(x)$, where $y_{1}(x)$ and $y_{2}(x)$ are power series.
(ii) Find the radius of convergence for $y_{1}(x)$ and $y_{2}(x)$.
7. Find the first three non zero terms in the power series solution of the IVP

$$
y^{\prime \prime}-(\sin x) y=0, \quad y(\pi)=1, \quad y^{\prime}(\pi)=0 .
$$

8. Using Rodrigues' formula for $P_{n}(x)$, show that
(T)(i) $P_{n}(-x)=(-1)^{n} P_{n}(x)$
(ii) $P_{n}^{\prime}(-x)=(-1)^{n+1} P_{n}^{\prime}(x)$
(iii) $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{m n}$
(iv) $\int_{-1}^{1} x^{m} P_{n}(x) d x=0 \quad$ if $n>m$.
9. Expand the following functions in terms of Legendre polynomials over $[-1,1]$:
(i) $f(x)=x^{3}+x+1 \quad$ (T)(ii) $f(x)=\left\{\begin{array}{lll}0 & \text { if } & -1 \leq x<0 \\ x & \text { if } & 0 \leq x \leq 1\end{array} \quad\right.$ (first three nonzero terms)
10. Suppose $m>n$. Show that $\int_{-1}^{1} x^{m} P_{n}(x) d x=0$ if $m-n$ is odd. What happens if $m-n$ is even?
11. The function on the left side of

$$
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

is called the generating function of the Legendre polynomial P_{n}. Assuming this, show that

$$
\begin{aligned}
& \text { (T)(i) }(n+1) P_{n+1}(x)-(2 n+1) x P_{n}(x)+n P_{n-1}(x)=0 \quad \text { (ii) } n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x) \\
& \text { (iii) } P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(n+1) P_{n}(x) \quad ; \quad \text { (iv) } P_{n}(1)=1, P_{n}(-1)=(-1)^{n} \\
& \text { (v) } P_{0}(0)=1, P_{2 n+1}(0)=0, P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-1)}{2^{n} n!}, \quad n \geq 1
\end{aligned}
$$

