ODE: Assignment-7

Frobenius method and Bessel function

1. For each of the following, verify that the origin is a regular singular point and find two

linearly independent solutions:

(a) 922y + (922 + 2)y = 0 (b) 2*(2* = 1)y —z(1+2*)y + (1 + 23y =0
(T) (c)zy"+(1—22)y + (- 1)y=0 (d) z(z—-1)y" +2(2z - 1)y +2y =0
Solution:

(a)
The given ODE can be written as

922 4+ 2
912

y'+ y=0

Hence z = 0 is a regular singular point. Let y = >~ _,a,2™*", ag # 0. This gives

Z In+r)(n+r—1)a,x™" + Z 9a,x" T2 + Z 2a,2"" =0
n=0 n=0 n=0
which can be written as
Z In+r)(n+r—1a,z""" + Z 9a, o™ + Z 2a,7"" =0
n=0 n=2 n=0

This can be rearranged as (after canceling z")

(97’(7“— 1) +2) aop+ <9r(7“+1) +2> a1m+z (9(n—l—r)(n+r— 1)an—|—9an_2—|—2an>x” =0

This implies

Dt 2 n>2
In+r)n+r—1)+2" —

<9r(r—1)+2) ag =0, (9r(r+1)+2) a,=0 and a, = —

Since ag # 0, we have Or(r —1)+2 =0 = r =2/3 =mr,r = 1/3 = ry. Here
r1 —ry = 1/3 is not an integer and we have two independent Frobenius series solutions.
With r =r;orr =19, Or(r+1)+2+#0 = a3 = 0. This leads to ag,y1 =0, n > 0.

Also,
9an—2
n — — ) Z 2
¢ Gntdr—2)Bntsr—1)
With r = r; = 2/3 we find
yi(x) = 932/32@2 " ap =1, ag, = _ -z n>1.
— 2n(6n + 1)
With r = = 1/3 we find
3agn—2
() = 27 Cagna®™, ag=1, agy = —5————=, n>1.
— 2n(6n — 1)



(b)

The given ODE can be written as

no 14+ 22 1+ 22

S e Y S N )
x(2? — 1)y * z2(z? — 1)

Hence x = 0 is a regular singular point. Let y =Y _,a,2™*", ag # 0. This gives

Z ((n_i_?n)(n_*_r_1)an<xn+r+2_xn+r)_(n+r)an(xn+r+xn+r+2)+an(xn+r+xn+r+2)) -0

n=0

which can be written as

Z ((n+r—2)(n+r—3)—(n+7‘—2)+1)an_gx’””"—z ((n+7‘)(n+r—1)+(n+r)—1>ana:”+’" =0
n=2 n=0

This can be rearranged as (after canceling z")

—(7"2 - 1>ao - ((T +1)* — 1)a1x + Z <(n +7—3)ap2— ((n+71)*— 1)an>x” =0

This implies

—3)2
<r2—1)a0:0, ((r+1)2—1>a1:0, and an—%anb n > 2.
Since ag #0, wehave 12 =1 =0 = r=1=r,,r=—1 =1y Here r; —ry =2 1is an

integer and we may or may not have two independent Frobenius series solutions.

With r =7, (r+1)>—=1#0 = a; = 0. Also,

(n—2)?

n = no, N>2 — a,=0 n>1.
a n(n+2)a 2, M a n

Hence
n(z) ==z, ap = 1.

For the other solution, let yo = yju(z) = zu (reduction of order technique)

"
9 " 9 , u 1 1 3 , 3

which integrating again gives

= _logx — —
u 08T — 53

Hence yo = zlnz + 1/(2z) (ignoring the negative sign)
()
The given ODE can be written as

1-2 -1
y//+ Z‘y,+$ =0
T i




Hence x = 0 is a regular singular point. Let y =Y _,a,2™"", ag # 0. This gives

Z ((n + T)(?”L +r— 1)anl,n+r—1 + (n + ,r)an(mn-‘rr—l _ an-i—r) + an(mn—&-r-i-l . xn+r>> -0

n=0

which can be written as

Z an—ﬂn”_l—z (2(n+r—1)+1>an_1x”+”_1+z ((n+r)(n+r—1)+(n+r))anm””_l =0

n=2 n=1 n=0

This can be rearranged as (after canceling 2" 1)

r2ag+ ((r+ 1)2%a; — (2r + 1)a0)x + Z ((n+7“)2an —(2(n+r—1)+1)a,_1+ an_2>x” =0
n=2

This implies

r?ag =0, (r+1)%a; = (2r + 1)ag, (n+7)%ay = (2(n+7r) — Day_1 — ap—2, n > 2

Now ay # 0 = r =r; = 0,7 = ry = 0. Since the indicial equation has double roots,
the given equation has only one independent Frobenius series solution. We take r = 0

and this gives a; = ag. We also have

21 1

n2 ap—-1 — ﬁan—% n Z 2.

Qn

With ag = 1 we get a; = 1. This leads to as = 1/2!, a3 = 1/3!. We prove a,, = 1/n!
by induction. Clearly the induction hypothesis is true for n = 1,2,3. Let it be true for
n=k. For n =k + 1, we have

2%k + 1 1 1 %k+1 1
= ar — ar_1 = —_ =
G = 2™ T er 2™ T 02—\ K (k + 1)!

Hence
n

yi(z) :Z% =e

n=0

For other solution let yo = yyu(x) = e®u. This gives
w'+u =0 = v =1/r = u=Iz

Hence yo(z) = € Inx
(d)
The given ODE can be written as

202¢ — 1) , 2
x(:z:—l)y +x(x—1)

y' + y=0
Hence z = 0 is a regular singular point. Let y =Y _,a,2™"", ag # 0. This gives

Z ((n +7r)(n+71 = Da, (@™ — 2" + (n + r)a, (4™ — 22" + 2anx"+’") =0
n=0



which can be written as

Z ((n+r—1)(n+7’—2)+4(n+r—1)+2> an_lx””_l—z <(n+7’)(n+r—1)+2(n+r)>anx"”_l =0

n=1 n=0

This can be rearranged as (after canceling x"~1)

(r* +r)ag — Z ((n+r)(n+7’+ Da, — ((n+r—1)(n+7r+2) +2)an,1)x” =0

n=1

This implies
(r*+7r)ag =0, (n+r)(n+r+1)a, — (n+r—1)(n+r+2)+2)a,.1=0,n>1

Now ay #0 = r =1r; =0,r = ry = —1. Hence r; — ry = 1 is an integer and hence

the ODE may or may not have two independent Frobenius series solution.

With r =r; =0,
n(n+ 1)a, = ((n —1)(n+2)+ 2)an_1 — a4y, = Up_1 —> ay = ag, n > 1.

Hence (with ag = 1)

n 1
3/1(95):217 1 -
n=0

For the other solution, let yo = yyu(z). This gives

1
" +2u' =0 = == = u=-1/z

2
Hence (neglecting the negative sign)
1
() = z(l —x)
We can write
(z) = 1 n 1
¥ = r 11—z

Since the last term is y; (), we can take yo(z) = 1/x

Note: If we continue the Frobenius series method with » = ro = —1, then from the
recurrence relation

n(n —1)a, =n(n—1a,_1, n > 1.

For n = 1, the relation is automatically satisfied for any value of a;. We may take

a; = 0. This leads to a,, = 0 for n > 1. Then we again get (taking ag = 1)

Ya(x) = -

. Show that 223y” + (cos 2x — 1)y’ + 2xy = 0 has only one Frobenius series solution.

Solution:



We can write the ODE as

2 — 1
222y + %xy’ +2y =10

Since

the indicial equation is
2r(r—1)—2r+2 = r* - 2r+1 = r=1,1.
Since the indicial equation has double roots, it has only one Frobenius series solution.

. (T) Reduce z*y" + zy’ + (2 — 1/4)y = 0 to normal form and hence find its general

solution.
Solution:

Suppose y(z) = u(z)v(x). Hence

1
2 (u"v + 20"V 4+ w") + z(u'v + w') + (x2 - —) uv =0

or
v*ou” + (220 + xv)u + ((:)czv" + a0 + <x2 — —> v) u=0.

To make the 2nd term vanish, we set

2% +arv=0 = 200 +v=0 —= v=—

Using this transformation the given ODE reduces to
' +u=0.
Thus general solution of the reduced equation is u = Asinx + B cosz. For the original
equation, the general solution is
sinx n CoS T
VT VT
. Using recurrence relations, show the following for Bessel function J,,:
()(T) Jo(x) = =Jo(x) + Ji(x)/z (i) 2y (2) + (04 1) g (2) = 20 (2)

Solution:

y=A

Useful identities for problems with Bessel’s functions:

/ /
<x”Jl,> =a"J,_1, <x’”J,,> =—x"J,u1,
Jy—l + Ju+1 - 2VJ1,/.T, Ju—l — Jl,+1 = QJZII



2J0(x) = J 1 (x) — Ji(x) = 21 ()
s 2J0(2) = —2(2) = Jo(x) — o) = 201 (2) /@ — 2Jo(x)
— J(@) = Jy(2) )z — Jo(x)
(i)
(x”+1Jn+1(x)>/ = 2L (2) = 2 (2) + (04 1) (@) = 2 ()
. Express

(i)(T) J3(z) in terms of Jy(z) and Jo(z) (i) J5(x) in terms of Ji(x) and Jy(z)

(iii) Jy(azx) in terms of Jy(ax) and Jy(az)
Solution:

(i) Using the identity J,+1 = 2vJ,/x — J,_1 we have

Jy(x) = %JQ(x) — J(z) = % (%Jl(x) _ Jo(x)> (@)
_ (_ - 1) I@) ~ L(a)

(ii) Using identities involving Bessel’s function, we get

20b(x) = Jy(x) — Js(z) = Ji(z) — (%Jg(x) - Jl(x)> = 2J,(x) — % (;Jl(:p) - Jo(x))

Hence Ji(x) — %JO(:C) + (1 _ i) ()

12

(iii) Using the identity J,41 = 2vJ,/z — J,_1, we get

Ji(ax) = %Jg(cﬂ) — Jo(azx) = % <%J2(ax) B Jl(ax)) — Ja(az)
- (a§i2 - 1) Jo(az) — —.Jy(ax)
_ (éi? _ 1) (%Jl(aa:) _ Jo(ax)> _ %Jl(aw)

1 48 24
- — (a%z - 8) Ji(ax) — (a2x2 - 1) Jo(ax)

. Prove that between each pair of consecutive positive zeros of Bessel function J, (), there

is exactly one zero of J,1(x) and vice versa.
Solution:

Let o and 8 be two consecutive positive zeros of J,1. Let f(z) = z¥"'J,,;. Then
f(a) = f(B) = 0. Thus there exists ¢ € (o, §) such that f'(¢) = 0. Taking vy =v +1

in [27J,] = 27J,_1, we see that J,(c) = 0. Thus there exists a zero of .J, between



consecutive zeros of J,41. Similarly taking v = v in [z77J,]' = —x77J,41, we conclude
that there exists a zero of J,,; between consecutive positive zeros of J,. To prove
uniqueness, let there exist two zero of J, between consecutive zeros o and g of J,.1.
This implies that there exist a zero of J,,; between a and 3, which contradicts the fact

that o and [ are consecutive zeroes.

. Show that the Bessel functions J, (v > 0) satisfy

1
1
/O PO o) = T )

where \; are the positive zeros of .J,.
Solution:

We know that y(t) = J,(t) satisfies

1 2 d
R P SR T d
y+y+ ( t2> y =0, 7
Let t = A\ = y(t) = y(Az) = u(x). Then v/(x) = Ay and v”(z) = A\?jj. Hence

u(z) = J,(Azx) satisfies

1 , VP
U// -+ Eu/ -+ ()\ — ?) u = O, (1)
Similarly, v(z) = J,(ux) satisfies
1 2
v”+;v'+(2—%)v: : (2)

Multiplying (1) by v and (2) by u and subtracting, we find

% [x(u'v — uv')} = (,u2 — /\2) Tuv.

Integrating from z = 0 to z = 1, we find

(1® = N?) /0 zuvdr = u'(1)v(1) — u(1)v'(1). (3)

Now u(1) = J,(A\) and v(1) = J,(u). Let us choose A = A\, and u = A, where A, and
A, are positive zeros of J,. Then u(1) = v(1) = 0 and thus find

1

(02— 22) / 2, ) Ty () d = 0.

0
If n # m, then
1
/ zJy,(Amz)J,(Apz) dz = 0.
0

Now from (3), we find [since u/(z) = AJ] (A\z) etc]

/115J3(Aa:) de = lim AJL(A)JV(//Q = l;;fv(A)JL(u)
ML) = o (A)L(A) = A (A7)
2\




Now if we take A = \,,, where )\, is a positive zero of .J,, then we find

2

1
1
2 _ - /
/0 22 (M) dz = 2<Jy(>\n)> .
Now from
/ , v
(a7 @) = =2 w) = Jyf@) = ZJ(2) = =y (),
we find by substituting z = A\,
lez<)‘n) = _Jl/—&-l()‘n)‘

Thus, finally we get
1

1
/0 P2 dr = L2 ().

Laplace Transform

1. Let F(s) be the Laplace transform of f(¢). Find the Laplace transform of f(at) (a > 0).

Solution:

a

£(f(at)) = /0 T et f(atydt = /O ey éF(s/a)

2. Find the Laplace transforms:

(a) [t] (greatest integer function), (b) ™ coshbt (m € non-negative integers),

, el sinat sint cosh ¢ sin 3t, 0<t<m,
(T)(c) e'sinat, (d) , () , () ft) =
t t 0, t>m,
Solution:
(a)
2 3 4
£(lt]) = / e_Stdt—l—Z/ e_Stdt—l—?)/ e dt+ -
1 2 3
e—% eS8
_ 1 —s —2s —3s L) — -S 1
S(+e +e e 4 = (s>0 = 0<e*<1)
(b)
L™ = m L(t™ coshbt) = lﬁ(ebttm + et
Sm+1 2
m! 1 1
= — -
9 ((s — byt (s b>m+1)
()

. . a
E(Sln at) = m — E(Qt S1n at) = m



(d) Use L(f(t)/t) = [ F(s)ds. Now

a
52 + a?

sin at > ds ™ 1
—— E( / ) = a\/s —82+a2:§—tan (5/01)
t o3 t —1
. E(e sina ) _ E—tan_1<s )
t 2 a
(e) Using result of the previous question

sint T 4 coshtsint 1

L(sinat) =

elsint N e tsint
t t

(r —tan"'(s — 1) — tan'(s + 1))

DO | —

(f)
L(f(t)) :/0 e‘Stf(t)dt:/O e‘“sin?)tdt:?)(lsj—fg)

1. Find the Laplace transforms (Hint: use second shifting theorem):

;

1, O0<t<m,
(a) f(t) = 0, mw<t<2nm,
| cost, ©>2m,

(

0, 0<t<l,
(b) f(t) =< cos(wt), 1<t<2,
0, t>2

Solution:

(a) Consider g(t) = u(t) —u(t —m)+u(t—2m) cost = u(t) —u(t —m)+u(t —2m) cos(t —2m)

1

E(f(t)) — E(g(t)) = g — e—mé + 6_27rss2 —

(b) Consider g(t) = (u(t—1)—u(t—2)) cos(wt) = —u(t—1) cos w(t—1)—u(t—2) cos w(t—2)

—s S —2s S
£0) = £(0) = = (o e )
. Find the inverse Laplace transforms of

s2+1 s+ 2 s~ (1 —e™2)(1 — 3e™2)
— (T d .
i D9 g Warg ©

(a) tan"'(a/s), (b)ln

52
Solution:

(a) Use L( —tf(t)) = F'(s). Thus,

a
52 + a?

sin at

F'(s) = = L7(F'(5)) = —sinat = [(t) = —




5 , ) ) 2(e~t — cost)
Fils) — - '(F'(s)) = 2(cost — e Tt
(5) e — L7(F'(s)) =2(cost —e™") = [f(t) t
() 2 1 1 !
s+
g 5t2 1 _
S e P AT ((s — 1) (5+5>2>
! . 1 2 2 -1 ! — th_St _ t2€t
F(S)_E ((3+5)3 - (3—1)3) — L (F(S)) - 12
Thus,
et . 675t
ft) =t—3

(d) s

%ﬁz:ﬂfmcmm%)zﬁwﬁ—ﬂﬂ%2@—”»

s
Thus,

= < 826+ 4) = u(t — ) cos 2t
s
(e)
(I—e®)1—3e7>) 1 de® 3e®
§2 TR e e

Thus,

F(£) =t — du(t — 2)(t — 2) + 3(t — )ult — 4)

. Using convolution, find the inverse Laplace transforms:
1 2 1 1

T _ —_— )
(T)(a) 52 —55+6’ (b) s2—1’ (c) s2(s2+4) (d) (s —1)2
Solution:
(a) ) ,
Fls) = 22— bs+6 (s —3)(s—2)
Now ] 1
3t 2t
L) = — L) = —.
Hence,
t t
f(t) :/ 637’62(15—‘1')(17_ _ eZt/ eTdr = e3t . 62t
0 0
(b) ) )
F p— p—
S s Sl P Yy
Now . )
£ —ty _
£(e)—8_1, L(e )_s+1‘
Hence,



1 11 2
F e
(5) s?2(s2+4)  2s2s2+4
Now
1 ) 2
,C(t) = ?, ;C (Sln 2'[;) = m
Hence,
1 [t 2t — sin 2t
ft) == / (t — 1) sin(2r)dr = 2212
2 /o 8
(@) 1 1 1
F(s) = =
() (s—=1)? s—1s—1
Now )
L(et) = )
(€)= -—
Hence,

t t
f(t) = / eTe! Tdr = et/ dr = te'
0 0

. Use Laplace transform to solve the initial value problems:
(a) y" + 4y = cos 2t, y(0) =0, ¥'(0) = 1.

4t fo<t<l1

T)(b) v + 3¢ + 2y =
(T)(b) y Y + 2y {8 G

8sint Hfo<t<nm
0 ift>nr

(¢) y" + 9y = {

t
(d) o, + 291 + 6 / () dr = 2u(t), oyt b= —yar  3(0) = —5,4(0) =
0

Solution:

(a) Taking Laplace Transform on both sides and simplifying (Y(s)=L][y(t)])
Y(s) =s/(s>+4)* +1/(s* +4)

Using convolution [or any other technique]

1 /[t in 2t
v = 3 / sin(zT)cos(g(t—T))dT+S”;
0
B tsin2t+sin2t
! 2

(b) Let r(t) = 4(u(t) —u(t—1))t+8u(t — 1) = 4u(t — 0)t +4u(t — 1)(1 — (t — 1)). Taking
Laplace Transform on both sides of the ODE, we get
4 4(s — 1)

(54 8s 4 2V () = Bls) = V() = GroiiG659) T 96+ D6 19)




Using partial fraction and shifting theorem we get

Y(s) 3,2 4 LY, (3 2 8 3
s)=—+— — e - — = —
s 82 s+1 s+2 s 82 s4+1 s+2

ziy@y:—3+%+4af—aﬂ+u@—1%5—2@—1y—&4ﬁﬂ+&7%4§

(c) Let r(t) = 8(u(t) — u(t — 7)) sint = 8u(t) sint + u(t — ) sin(t — 7). Taking Laplace
Transform on both sides of the ODE, we get
4 R
L R()
s2+9 s249

(s> +9)Y(s) = R(s) +4 = Y(s) =

We can explicitly write R(s) and then use partial fraction technique.

4 8 4 1 1
Y = — 1 TS — 1 —Ts .
(5) 52+9+( e )(s2+1)(s2+9) 52+9+< e )(52—1—1 32+9)

This gives

4 1 1
y(t) = 3 sin 3t + (sint ~3 sin 3t) +u(t — ) (sin(t —7) — 3 sin 3(t — 71'))
1
= sint+sin3t 4+ u(t — ) (§ sin 3t — sin t)
(Otherwise, use convolution as follows
4 I .
y(t) = =sindt+ - [ r(7)sin3(t —7)dr
0

3 3

Thus for 0 <t < 7, we get

4 8 [ 4 1
y(t) = gsin?)t—l— §/ sinTsin3(t — 7)dr = gsin3t+sint— gsin?)t = sin 3t +sint
0

and for ¢ > 7, we get [since r(t) = 0]

4 8 [7 1 4
y(t):§sin3t+§/ SinTSin3(t—T)dT+§/ OSiHS(t—T)dTIESin?)t
0 s

This solution matches with that obtained earlier. >
(d) Taking Laplace transform, we get

6Y5

(8+2)Yl+T = -5

2

s

sYi+(s+1)Y, = 1
Solving

12 1 18 1

1
s s—1 b5s+4
6 1 +24 1
55—1 5544

ol




Thus,

12 18
wlt) = 1- el = e
6 24
y2(t> = g€t+€6_4t

7. Solve the integral equations:

(a) y(t) + /0 y(1)dr = u(t —a) + u(t — b)
(b) et =y(t) + 2/0 cos(t — 7)y(7)dr

t
(c) 3sin2t = y(t) + / (t—7)y(r)dr
0
Solution:
(a) Taking Laplace Transform, we get

e—as —bs

Y =
(5) s+1+s—1—1

— y(t) = u(t — a)e Y fu(t — b)e” Y

(b) Taking Laplace Transform, we get

241 1 2 2

Y(s) = GF1P 115 Gr1E Grip

Thus,

(c) Taking Laplace Transform, we get

2 . 8
2+1 (s2+4)

Y(s) = = y(t) = —2sint + 4sin 2t



