ODE: Assignment-7

Frobenius method and Bessel function

1. For each of the following, verify that the origin is a regular singular point and find two linearly independent solutions:
(a) $9 x^{2} y^{\prime \prime}+\left(9 x^{2}+2\right) y=0$
(b) $x^{2}\left(x^{2}-1\right) y^{\prime \prime}-x\left(1+x^{2}\right) y^{\prime}+\left(1+x^{2}\right) y=0$
(T) (c) $x y^{\prime \prime}+(1-2 x) y^{\prime}+(x-1) y=0$
(d) $x(x-1) y^{\prime \prime}+2(2 x-1) y^{\prime}+2 y=0$

Solution:

(a)

The given ODE can be written as

$$
y^{\prime \prime}+\frac{9 x^{2}+2}{9 x^{2}} y=0
$$

Hence $x=0$ is a regular singular point. Let $y=\sum_{n=0} a_{n} x^{n+r}, a_{0} \neq 0$. This gives

$$
\sum_{n=0} 9(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=0} 9 a_{n} x^{n+r+2}+\sum_{n=0} 2 a_{n} x^{n+r}=0
$$

which can be written as

$$
\sum_{n=0} 9(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=2} 9 a_{n-2} x^{n+r}+\sum_{n=0} 2 a_{n} x^{n+r}=0
$$

This can be rearranged as (after canceling x^{r})

$$
(9 r(r-1)+2) a_{0}+(9 r(r+1)+2) a_{1} x+\sum_{n=2}\left(9(n+r)(n+r-1) a_{n}+9 a_{n-2}+2 a_{n}\right) x^{n}=0
$$

This implies
$(9 r(r-1)+2) a_{0}=0,(9 r(r+1)+2) a_{1}=0 \quad$ and $\quad a_{n}=-\frac{9 a_{n-2}}{9(n+r)(n+r-1)+2}, n \geq 2$.
Since $a_{0} \neq 0$, we have $9 r(r-1)+2=0 \Longrightarrow r=2 / 3=r_{1}, r=1 / 3=r_{2}$. Here $r_{1}-r_{2}=1 / 3$ is not an integer and we have two independent Frobenius series solutions. With $r=r_{1}$ or $r=r_{2}, 9 r(r+1)+2 \neq 0 \Longrightarrow a_{1}=0$. This leads to $a_{2 n+1}=0, n \geq 0$. Also,

$$
a_{n}=-\frac{9 a_{n-2}}{(3 n+3 r-2)(3 n+3 r-1)}, n \geq 2 .
$$

With $r=r_{1}=2 / 3$ we find

$$
y_{1}(x)=x^{2 / 3} \sum_{n=0} a_{2 n} x^{2 n}, \quad a_{0}=1, a_{2 n}=-\frac{3 a_{2 n-2}}{2 n(6 n+1)}, n \geq 1 .
$$

With $r=r_{1}=1 / 3$ we find

$$
y_{2}(x)=x^{1 / 3} \sum_{n=0} a_{2 n} x^{2 n}, \quad a_{0}=1, a_{2 n}=-\frac{3 a_{2 n-2}}{2 n(6 n-1)}, n \geq 1 .
$$

(b)

The given ODE can be written as

$$
y^{\prime \prime}-\frac{1+x^{2}}{x\left(x^{2}-1\right)} y^{\prime}+\frac{1+x^{2}}{x^{2}\left(x^{2}-1\right)}=0
$$

Hence $x=0$ is a regular singular point. Let $y=\sum_{n=0} a_{n} x^{n+r}, a_{0} \neq 0$. This gives
$\sum_{n=0}\left((n+r)(n+r-1) a_{n}\left(x^{n+r+2}-x^{n+r}\right)-(n+r) a_{n}\left(x^{n+r}+x^{n+r+2}\right)+a_{n}\left(x^{n+r}+x^{n+r+2}\right)\right)=0$
which can be written as
$\sum_{n=2}((n+r-2)(n+r-3)-(n+r-2)+1) a_{n-2} x^{n+r}-\sum_{n=0}((n+r)(n+r-1)+(n+r)-1) a_{n} x^{n+r}=0$
This can be rearranged as (after canceling x^{r})

$$
-\left(r^{2}-1\right) a_{0}-\left((r+1)^{2}-1\right) a_{1} x+\sum_{n=2}\left((n+r-3)^{2} a_{n-2}-\left((n+r)^{2}-1\right) a_{n}\right) x^{n}=0
$$

This implies

$$
\left(r^{2}-1\right) a_{0}=0,\left((r+1)^{2}-1\right) a_{1}=0, \quad \text { and } \quad a_{n}=\frac{(n+r-3)^{2}}{(n+r)^{2}-1} a_{n-2}, n \geq 2
$$

Since $a_{0} \neq 0$, we have $r^{2}-1=0 \Longrightarrow r=1=r_{1}, r=-1=r_{2}$. Here $r_{1}-r_{2}=2$ is an integer and we may or may not have two independent Frobenius series solutions.

With $r=r_{1},(r+1)^{2}-1 \neq 0 \Longrightarrow a_{1}=0$. Also,

$$
a_{n}=\frac{(n-2)^{2}}{n(n+2)} a_{n-2}, n \geq 2 \Longrightarrow a_{n}=0, n \geq 1
$$

Hence

$$
y_{1}(x)=x, \quad a_{0}=1
$$

For the other solution, let $y_{2}=y_{1} u(x)=x u$ (reduction of order technique)

$$
x\left(x^{2}-1\right) u^{\prime \prime}+\left(x^{2}-3\right) u^{\prime}=0 \Longrightarrow \frac{u^{\prime \prime}}{u^{\prime}}=\frac{1}{1+x}-\frac{1}{1-x}-\frac{3}{x} \Longrightarrow u^{\prime}=1 / x^{3}-1 / x
$$

which integrating again gives

$$
u=-\log x-\frac{1}{2 x^{2}}
$$

Hence $y_{2}=x \ln x+1 /(2 x)$ (ignoring the negative sign)
(c)

The given ODE can be written as

$$
y^{\prime \prime}+\frac{1-2 x}{x} y^{\prime}+\frac{x-1}{x}=0
$$

Hence $x=0$ is a regular singular point. Let $y=\sum_{n=0} a_{n} x^{n+r}, a_{0} \neq 0$. This gives
$\sum_{n=0}\left((n+r)(n+r-1) a_{n} x^{n+r-1}+(n+r) a_{n}\left(x^{n+r-1}-2 x^{n+r}\right)+a_{n}\left(x^{n+r+1}-x^{n+r}\right)\right)=0$
which can be written as
$\sum_{n=2} a_{n-2} x^{n+r-1}-\sum_{n=1}(2(n+r-1)+1) a_{n-1} x^{n+r-1}+\sum_{n=0}((n+r)(n+r-1)+(n+r)) a_{n} x^{n+r-1}=0$
This can be rearranged as (after canceling x^{r-1})
$r^{2} a_{0}+\left((r+1)^{2} a_{1}-(2 r+1) a_{0}\right) x+\sum_{n=2}\left((n+r)^{2} a_{n}-(2(n+r-1)+1) a_{n-1}+a_{n-2}\right) x^{n}=0$
This implies

$$
r^{2} a_{0}=0,(r+1)^{2} a_{1}=(2 r+1) a_{0},(n+r)^{2} a_{n}=(2(n+r)-1) a_{n-1}-a_{n-2}, n \geq 2
$$

Now $a_{0} \neq 0 \Longrightarrow r=r_{1}=0, r=r_{2}=0$. Since the indicial equation has double roots, the given equation has only one independent Frobenius series solution. We take $r=0$ and this gives $a_{1}=a_{0}$. We also have

$$
a_{n}=\frac{2 n-1}{n^{2}} a_{n-1}-\frac{1}{n^{2}} a_{n-2}, \quad n \geq 2 .
$$

With $a_{0}=1$ we get $a_{1}=1$. This leads to $a_{2}=1 / 2!, a_{3}=1 / 3$!. We prove $a_{n}=1 / n$! by induction. Clearly the induction hypothesis is true for $n=1,2,3$. Let it be true for $n=k$. For $n=k+1$, we have

$$
a_{k+1}=\frac{2 k+1}{(k+1)^{2}} a_{k}-\frac{1}{(k+1)^{2}} a_{k-1}=\frac{1}{(k+1)^{2}(k-1)!}\left(\frac{2 k+1}{k}-1\right)=\frac{1}{(k+1)!}
$$

Hence

$$
y_{1}(x)=\sum_{n=0} \frac{x^{n}}{n!}=e^{x}
$$

For other solution let $y_{2}=y_{1} u(x)=e^{x} u$. This gives

$$
x u^{\prime \prime}+u^{\prime}=0 \Longrightarrow u^{\prime}=1 / x \Longrightarrow u=\ln x
$$

Hence $y_{2}(x)=e^{x} \ln x$
(d)

The given ODE can be written as

$$
y^{\prime \prime}+\frac{2(2 x-1)}{x(x-1)} y^{\prime}+\frac{2}{x(x-1)} y=0
$$

Hence $x=0$ is a regular singular point. Let $y=\sum_{n=0} a_{n} x^{n+r}, a_{0} \neq 0$. This gives $\sum_{n=0}\left((n+r)(n+r-1) a_{n}\left(x^{n+r}-x^{n+r-1}\right)+(n+r) a_{n}\left(4 x^{n+r}-2 x^{n+r-1}\right)+2 a_{n} x^{n+r}\right)=0$
which can be written as
$\sum_{n=1}((n+r-1)(n+r-2)+4(n+r-1)+2) a_{n-1} x^{n+r-1}-\sum_{n=0}((n+r)(n+r-1)+2(n+r)) a_{n} x^{n+r-1}=0$
This can be rearranged as (after canceling x^{r-1})

$$
\left(r^{2}+r\right) a_{0}-\sum_{n=1}\left((n+r)(n+r+1) a_{n}-((n+r-1)(n+r+2)+2) a_{n-1}\right) x^{n}=0
$$

This implies

$$
\left(r^{2}+r\right) a_{0}=0,(n+r)(n+r+1) a_{n}-((n+r-1)(n+r+2)+2) a_{n-1}=0, n \geq 1
$$

Now $a_{0} \neq 0 \Longrightarrow r=r_{1}=0, r=r_{2}=-1$. Hence $r_{1}-r_{2}=1$ is an integer and hence the ODE may or may not have two independent Frobenius series solution.

With $r=r_{1}=0$,

$$
n(n+1) a_{n}=((n-1)(n+2)+2) a_{n-1} \Longrightarrow a_{n}=a_{n-1} \Longrightarrow a_{n}=a_{0}, n \geq 1
$$

Hence (with $a_{0}=1$)

$$
y_{1}(x)=\sum_{n=0} x^{n}=\frac{1}{1-x}
$$

For the other solution, let $y_{2}=y_{1} u(x)$. This gives

$$
x u^{\prime \prime}+2 u^{\prime}=0 \Longrightarrow u^{\prime}=\frac{1}{x^{2}} \Longrightarrow u=-1 / x
$$

Hence (neglecting the negative sign)

$$
y_{2}(x)=\frac{1}{x(1-x)}
$$

We can write

$$
y_{2}(x)=\frac{1}{x}+\frac{1}{1-x}
$$

Since the last term is $y_{1}(x)$, we can take $y_{2}(x)=1 / x$
Note: If we continue the Frobenius series method with $r=r_{2}=-1$, then from the recurrence relation

$$
n(n-1) a_{n}=n(n-1) a_{n-1}, n \geq 1
$$

For $n=1$, the relation is automatically satisfied for any value of a_{1}. We may take $a_{1}=0$. This leads to $a_{n}=0$ for $n \geq 1$. Then we again get ($\operatorname{taking} a_{0}=1$)

$$
y_{2}(x)=\frac{1}{x}
$$

2. Show that $2 x^{3} y^{\prime \prime}+(\cos 2 x-1) y^{\prime}+2 x y=0$ has only one Frobenius series solution.

Solution:

We can write the ODE as

$$
2 x^{2} y^{\prime \prime}+\frac{\cos 2 x-1}{x^{2}} x y^{\prime}+2 y=0
$$

Since

$$
\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{x^{2}}=-2,
$$

the indicial equation is

$$
2 r(r-1)-2 r+2 \Longrightarrow r^{2}-2 r+1 \Longrightarrow r=1,1
$$

Since the indicial equation has double roots, it has only one Frobenius series solution.
3. (T) Reduce $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$ to normal form and hence find its general solution.

Solution:

Suppose $y(x)=u(x) v(x)$. Hence

$$
x^{2}\left(u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}\right)+x\left(u^{\prime} v+u v^{\prime}\right)+\left(x^{2}-\frac{1}{4}\right) u v=0
$$

or

$$
x^{2} v u^{\prime \prime}+\left(2 x^{2} v^{\prime}+x v\right) u^{\prime}+\left(\left(x^{2} v^{\prime \prime}+x v^{\prime}+\left(x^{2}-\frac{1}{4}\right) v\right) u=0 .\right.
$$

To make the 2 nd term vanish, we set

$$
2 x^{2} v^{\prime}+x v=0 \Longrightarrow 2 x v^{\prime}+v=0 \Longrightarrow v=\frac{1}{\sqrt{x}}
$$

Using this transformation the given ODE reduces to

$$
u^{\prime \prime}+u=0 .
$$

Thus general solution of the reduced equation is $u=A \sin x+B \cos x$. For the original equation, the general solution is

$$
y=A \frac{\sin x}{\sqrt{x}}+B \frac{\cos x}{\sqrt{x}} .
$$

4. Using recurrence relations, show the following for Bessel function J_{n} :
(i) $(\mathbf{T}) J_{0}^{\prime \prime}(x)=-J_{0}(x)+J_{1}(x) / x$
(ii) $x J_{n+1}^{\prime}(x)+(n+1) J_{n+1}(x)=x J_{n}(x)$

Solution:

Useful identities for problems with Bessel's functions:

$$
\begin{aligned}
& \left(x^{\nu} J_{\nu}\right)^{\prime}=x^{\nu} J_{\nu-1}, \quad\left(x^{-\nu} J_{\nu}\right)^{\prime}=-x^{-\nu} J_{\nu+1}, \\
& J_{\nu-1}+J_{\nu+1}=2 \nu J_{\nu} / x, \quad J_{\nu-1}-J_{\nu+1}=2 J_{\nu}^{\prime} .
\end{aligned}
$$

(i)

$$
\begin{gathered}
2 J_{0}^{\prime}(x)=J_{-1}(x)-J_{1}(x)=-2 J_{1}(x) \\
\Longrightarrow 2 J_{0}^{\prime \prime}(x)=-2 J_{1}^{\prime}(x)=J_{2}(x)-J_{0}(x)=2 J_{1}(x) / x-2 J_{0}(x) \\
\Longrightarrow J_{0}^{\prime \prime}(x)=J_{1}(x) / x-J_{0}(x)
\end{gathered}
$$

(ii)

$$
\left(x^{n+1} J_{n+1}(x)\right)^{\prime}=x^{n+1} J_{n}(x) \Longrightarrow x J_{n+1}^{\prime}(x)+(n+1) J_{n+1}(x)=x J_{n}(x)
$$

5. Express
(i)(T) $J_{3}(x)$ in terms of $J_{1}(x)$ and $J_{0}(x)$
(ii) $J_{2}^{\prime}(x)$ in terms of $J_{1}(x)$ and $J_{0}(x)$
(iii) $J_{4}(a x)$ in terms of $J_{1}(a x)$ and $J_{0}(a x)$

Solution:

(i) Using the identity $J_{\nu+1}=2 \nu J_{\nu} / x-J_{\nu-1}$ we have

$$
\begin{aligned}
J_{3}(x) & =\frac{4}{x} J_{2}(x)-J_{1}(x)=\frac{4}{x}\left(\frac{2}{x} J_{1}(x)-J_{0}(x)\right)-J_{1}(x) \\
& =\left(\frac{8}{x^{2}}-1\right) J_{1}(x)-\frac{4}{x} J_{0}(x)
\end{aligned}
$$

(ii) Using identities involving Bessel's function, we get

$$
\begin{gathered}
2 J_{2}^{\prime}(x)=J_{1}(x)-J_{3}(x)=J_{1}(x)-\left(\frac{4}{x} J_{2}(x)-J_{1}(x)\right)=2 J_{1}(x)-\frac{4}{x}\left(\frac{2}{x} J_{1}(x)-J_{0}(x)\right) \\
\text { Hence } J_{2}^{\prime}(x)=\frac{2}{x} J_{0}(x)+\left(1-\frac{4}{x^{2}}\right) J_{1}(x)
\end{gathered}
$$

(iii) Using the identity $J_{\nu+1}=2 \nu J_{\nu} / x-J_{\nu-1}$, we get

$$
\begin{aligned}
J_{4}(a x) & =\frac{6}{a x} J_{3}(a x)-J_{2}(a x)=\frac{6}{a x}\left(\frac{4}{a x} J_{2}(a x)-J_{1}(a x)\right)-J_{2}(a x) \\
& =\left(\frac{24}{a^{2} x^{2}}-1\right) J_{2}(a x)-\frac{6}{a x} J_{1}(a x) \\
& =\left(\frac{24}{a^{2} x^{2}}-1\right)\left(\frac{2}{a x} J_{1}(a x)-J_{0}(a x)\right)-\frac{6}{a x} J_{1}(a x) \\
& =\frac{1}{a x}\left(\frac{48}{a^{2} x^{2}}-8\right) J_{1}(a x)-\left(\frac{24}{a^{2} x^{2}}-1\right) J_{0}(a x)
\end{aligned}
$$

6. Prove that between each pair of consecutive positive zeros of Bessel function $J_{\nu}(x)$, there is exactly one zero of $J_{\nu+1}(x)$ and vice versa.

Solution:

Let α and β be two consecutive positive zeros of $J_{\nu+1}$. Let $f(x)=x^{\nu+1} J_{\nu+1}$. Then $f(\alpha)=f(\beta)=0$. Thus there exists $c \in(\alpha, \beta)$ such that $f^{\prime}(c)=0$. Taking $\gamma=\nu+1$ in $\left[x^{\gamma} J_{\gamma}\right]^{\prime}=x^{\gamma} J_{\gamma-1}$, we see that $J_{\nu}(c)=0$. Thus there exists a zero of J_{ν} between
consecutive zeros of $J_{\nu+1}$. Similarly taking $\gamma=\nu$ in $\left[x^{-\gamma} J_{\gamma}\right]^{\prime}=-x^{-\gamma} J_{\gamma+1}$, we conclude that there exists a zero of $J_{\nu+1}$ between consecutive positive zeros of J_{ν}. To prove uniqueness, let there exist two zero of J_{ν} between consecutive zeros α and β of $J_{\nu+1}$. This implies that there exist a zero of $J_{\nu+1}$ between α and β, which contradicts the fact that α and β are consecutive zeroes.
7. Show that the Bessel functions $J_{\nu}(\nu \geq 0)$ satisfy

$$
\int_{0}^{1} x J_{\nu}\left(\lambda_{m} x\right) J_{\nu}\left(\lambda_{n} x\right) d x=\frac{1}{2} J_{\nu+1}^{2}\left(\lambda_{n}\right) \delta_{m n}
$$

where λ_{i} are the positive zeros of J_{ν}.

Solution:

We know that $y(t)=J_{\nu}(t)$ satisfies

$$
\ddot{y}+\frac{1}{t} \dot{y}+\left(1-\frac{\nu^{2}}{t^{2}}\right) y=0, \quad \cdot \equiv \frac{d}{d t}
$$

Let $t=\lambda x \Longrightarrow y(t)=y(\lambda x)=u(x)$. Then $u^{\prime}(x)=\lambda \dot{y}$ and $u^{\prime \prime}(x)=\lambda^{2} \ddot{y}$. Hence $u(x)=J_{\nu}(\lambda x)$ satisfies

$$
\begin{equation*}
u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(\lambda^{2}-\frac{\nu^{2}}{x^{2}}\right) u=0 \tag{1}
\end{equation*}
$$

Similarly, $v(x)=J_{\nu}(\mu x)$ satisfies

$$
\begin{equation*}
v^{\prime \prime}+\frac{1}{x} v^{\prime}+\left(\mu^{2}-\frac{\nu^{2}}{x^{2}}\right) v=0 \tag{2}
\end{equation*}
$$

Multiplying (1) by v and (2) by u and subtracting, we find

$$
\frac{d}{d x}\left[x\left(u^{\prime} v-u v^{\prime}\right)\right]=\left(\mu^{2}-\lambda^{2}\right) x u v
$$

Integrating from $x=0$ to $x=1$, we find

$$
\begin{equation*}
\left(\mu^{2}-\lambda^{2}\right) \int_{0}^{1} x u v d x=u^{\prime}(1) v(1)-u(1) v^{\prime}(1) . \tag{3}
\end{equation*}
$$

Now $u(1)=J_{\nu}(\lambda)$ and $v(1)=J_{\nu}(\mu)$. Let us choose $\lambda=\lambda_{m}$ and $\mu=\lambda_{n}$, where λ_{m} and λ_{n} are positive zeros of J_{ν}. Then $u(1)=v(1)=0$ and thus find

$$
\left(\lambda_{n}^{2}-\lambda_{m}^{2}\right) \int_{0}^{1} x J_{\nu}\left(\lambda_{m} x\right) J_{\nu}\left(\lambda_{n} x\right) d x=0
$$

If $n \neq m$, then

$$
\int_{0}^{1} x J_{\nu}\left(\lambda_{m} x\right) J_{\nu}\left(\lambda_{n} x\right) d x=0
$$

Now from (3), we find [since $u^{\prime}(x)=\lambda J_{\nu}^{\prime}(\lambda x)$ etc]

$$
\begin{aligned}
\int_{0}^{1} x J_{\nu}^{2}(\lambda x) d x & =\lim _{\mu \rightarrow \lambda} \frac{\lambda J_{\nu}^{\prime}(\lambda) J_{\nu}(\mu)-\mu J_{\nu}(\lambda) J_{\nu}^{\prime}(\mu)}{\mu^{2}-\lambda^{2}} \\
& =\frac{\lambda\left(J_{\nu}^{\prime}(\lambda)\right)^{2}-J_{\nu}(\lambda) J_{\nu}^{\prime}(\lambda)-\lambda J_{\nu}(\lambda) J_{\nu}^{\prime \prime}(\lambda)}{2 \lambda}
\end{aligned}
$$

Now if we take $\lambda=\lambda_{n}$, where λ_{n} is a positive zero of J_{ν}, then we find

$$
\int_{0}^{1} x J_{\nu}^{2}\left(\lambda_{n} x\right) d x=\frac{1}{2}\left(J_{\nu}^{\prime}\left(\lambda_{n}\right)\right)^{2} .
$$

Now from

$$
\left(x^{-\nu} J_{\nu}(x)\right)^{\prime}=-x^{-\nu} J_{\nu+1}(x) \Longrightarrow J_{\nu}^{\prime}(x)-\frac{\nu}{x} J_{\nu}(x)=-J_{\nu+1}(x)
$$

we find by substituting $x=\lambda_{n}$

$$
J_{\nu}^{\prime}\left(\lambda_{n}\right)=-J_{\nu+1}\left(\lambda_{n}\right) .
$$

Thus, finally we get

$$
\int_{0}^{1} x J_{\nu}^{2}\left(\lambda_{n} x\right) d x=\frac{1}{2} J_{\nu+1}^{2}\left(\lambda_{n}\right) .
$$

Laplace Transform

1. Let $F(s)$ be the Laplace transform of $f(t)$. Find the Laplace transform of $f(a t) \quad(a>0)$.

Solution:

$$
\mathcal{L}(f(a t))=\int_{0}^{\infty} e^{-s t} f(a t) d t=\frac{1}{a} \int_{0}^{\infty} e^{-(s / a) \tau} f(\tau) d \tau=\frac{1}{a} F(s / a)
$$

2. Find the Laplace transforms:
(a) $[t]$ (greatest integer function),
(b) $t^{m} \cosh b t \quad(m \in$ non-negative integers),
$(\mathbf{T})(\mathrm{c}) e^{t} \sin a t$,
(d) $\frac{e^{t} \sin a t}{t}$,
(e) $\frac{\sin t \cosh t}{t}$,
(f) $f(t)=\left\{\begin{array}{cl}\sin 3 t, & 0<t<\pi, \\ 0, & t>\pi,\end{array}\right.$

Solution:

(a)

$$
\begin{aligned}
\mathcal{L}([t]) & =\int_{1}^{2} e^{-s t} d t+2 \int_{2}^{3} e^{-s t} d t+3 \int_{3}^{4} e^{-s t} d t+\cdots \\
& =\frac{e^{-s}}{s}\left(1+e^{-s}+e^{-2 s}+e^{-3 s}+\cdots\right)=\frac{e^{-s}}{s\left(1-e^{-s}\right)} \quad\left(s>0 \Longrightarrow 0<e^{-s}<1\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathcal{L}\left(t^{m}\right) & =\frac{m!}{s^{m+1}} \Longrightarrow \mathcal{L}\left(t^{m} \cosh b t\right)=\frac{1}{2} \mathcal{L}\left(e^{b t} t^{m}+e^{-b t} t^{m}\right) \\
& =\frac{m!}{2}\left(\frac{1}{(s-b)^{m+1}}+\frac{1}{(s+b)^{m+1}}\right)
\end{aligned}
$$

(c)

$$
\mathcal{L}(\sin a t)=\frac{a}{s^{2}+a^{2}} \Longrightarrow \mathcal{L}\left(e^{t} \sin a t\right)=\frac{a}{(s-1)^{2}+a^{2}}
$$

(d) Use $\mathcal{L}(f(t) / t)=\int_{s}^{\infty} F(s) d s$. Now

$$
\begin{aligned}
\mathcal{L}(\sin a t) & =\frac{a}{s^{2}+a^{2}} \\
\Longrightarrow \mathcal{L}\left(\frac{\sin a t}{t}\right) & =a \int_{s}^{\infty} \frac{d s}{s^{2}+a^{2}}=\frac{\pi}{2}-\tan ^{-1}(s / a) \\
\Longrightarrow \mathcal{L}\left(\frac{e^{t} \sin a t}{t}\right) & =\frac{\pi}{2}-\tan ^{-1}\left(\frac{s-1}{a}\right)
\end{aligned}
$$

(e) Using result of the previous question

$$
\begin{gathered}
\mathcal{L}\left(\frac{\sin t}{t}\right)=\frac{\pi}{2}-\tan ^{-1}(s) \Longrightarrow \mathcal{L}\left(\frac{\cosh t \sin t}{t}\right)=\frac{1}{2}\left(\frac{e^{t} \sin t}{t}+\frac{e^{-t} \sin t}{t}\right) \\
=\frac{1}{2}\left(\pi-\tan ^{-1}(s-1)-\tan ^{-1}(s+1)\right)
\end{gathered}
$$

(f)

$$
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\pi} e^{-s t} \sin 3 t d t=\frac{3\left(1+e^{-\pi s}\right)}{s^{2}+9}
$$

1. Find the Laplace transforms (Hint: use second shifting theorem):
(a) $f(t)=\left\{\begin{array}{cl}1, & 0<t<\pi, \\ 0, & \pi<t<2 \pi, \\ \cos t, & t>2 \pi,\end{array}\right.$
(b) $f(t)=\left\{\begin{array}{cl}0, & 0<t<1, \\ \cos (\pi t), & 1<t<2, \\ 0, & t>2\end{array}\right.$

Solution:

(a) Consider $g(t)=u(t)-u(t-\pi)+u(t-2 \pi) \cos t=u(t)-u(t-\pi)+u(t-2 \pi) \cos (t-2 \pi)$

$$
\mathcal{L}(f(t))=\mathcal{L}(g(t))=\frac{1}{s}-e^{-\pi s} \frac{1}{s}+e^{-2 \pi s} \frac{s}{s^{2}+1}
$$

(b) Consider $g(t)=(u(t-1)-u(t-2)) \cos (\pi t)=-u(t-1) \cos \pi(t-1)-u(t-2) \cos \pi(t-2)$

$$
\mathcal{L}(f(t))=\mathcal{L}(g(t))=-\left(e^{-s} \frac{s}{s^{2}+\pi^{2}}+e^{-2 s} \frac{s}{s^{2}+\pi^{2}}\right)
$$

2. Find the inverse Laplace transforms of
(a) $\tan ^{-1}(a / s)$, (b) $\ln \frac{s^{2}+1}{(s+1)^{2}}$,
$(\mathbf{T})(\mathrm{c}) \frac{s+2}{\left(s^{2}+4 s-5\right)^{2}}$,
(d) $\frac{s e^{-\pi s}}{s^{2}+4}$,
(e) $\frac{\left(1-e^{-2 s}\right)\left(1-3 e^{-2 s}\right)}{s^{2}}$.

Solution:

(a) Use $\mathcal{L}(-t f(t))=F^{\prime}(s)$. Thus,

$$
F^{\prime}(s)=-\frac{a}{s^{2}+a^{2}} \Longrightarrow \mathcal{L}^{-1}\left(F^{\prime}(s)\right)=-\sin a t \Longrightarrow f(t)=\frac{\sin a t}{t}
$$

(b)

$$
F^{\prime}(s)=\frac{2 s}{s^{2}+1}-\frac{2}{s+1} \Longrightarrow \mathcal{L}^{-1}\left(F^{\prime}(s)\right)=2\left(\cos t-e^{-t}\right) \Longrightarrow f(t)=\frac{2\left(e^{-t}-\cos t\right)}{t}
$$

(c)

$$
\begin{gathered}
F(s)=\frac{s+2}{\left(s^{2}+4 s-5\right)^{2}}=\frac{1}{12}\left(\frac{1}{(s-1)^{2}}-\frac{1}{(s+5)^{2}}\right) \\
F^{\prime}(s)=\frac{1}{12}\left(\frac{2}{(s+5)^{3}}-\frac{2}{(s-1)^{3}}\right) \Longrightarrow \mathcal{L}^{-1}\left(F^{\prime}(s)\right)=\frac{t^{2} e^{-5 t}-t^{2} e^{t}}{12}
\end{gathered}
$$

Thus,

$$
f(t)=t \frac{e^{t}-e^{-5 t}}{12}
$$

(d)

$$
\frac{s e^{-\pi s}}{s^{2}+4}=e^{-\pi s} \mathcal{L}(\cos 2 t)=\mathcal{L}(u(t-\pi) \cos 2(t-\pi))
$$

Thus,

$$
\mathcal{L}^{-1}\left(\frac{s e^{-\pi s}}{s^{2}+4}\right)=u(t-\pi) \cos 2 t
$$

(e)

$$
\frac{\left(1-e^{-2 s}\right)\left(1-3 e^{-2 s}\right)}{s^{2}}=\frac{1}{s^{2}}-\frac{4 e^{-2 s}}{s^{2}}+\frac{3 e^{-4 s}}{s^{2}}
$$

Thus,

$$
f(t)=t-4 u(t-2)(t-2)+3(t-4) u(t-4)
$$

3. Using convolution, find the inverse Laplace transforms:
(T)(a) $\frac{1}{s^{2}-5 s+6}$,
(b) $\frac{2}{s^{2}-1}$,
(c) $\frac{1}{s^{2}\left(s^{2}+4\right)}$,
(d) $\frac{1}{(s-1)^{2}}$.

Solution:

(a)

$$
F(s)=\frac{1}{s^{2}-5 s+6}=\frac{1}{(s-3)(s-2)}
$$

Now

$$
\mathcal{L}\left(e^{3 t}\right)=\frac{1}{s-3}, \quad \mathcal{L}\left(e^{2 t}\right)=\frac{1}{s-2} .
$$

Hence,

$$
f(t)=\int_{0}^{t} e^{3 \tau} e^{2(t-\tau)} d \tau=e^{2 t} \int_{0}^{t} e^{\tau} d \tau=e^{3 t}-e^{2 t}
$$

(b)

$$
F(s)=\frac{2}{s^{2}-1}=\frac{2}{(s+1)(s-1)}
$$

Now

$$
\mathcal{L}\left(e^{t}\right)=\frac{1}{s-1}, \quad \mathcal{L}\left(e^{-t}\right)=\frac{1}{s+1} .
$$

Hence,

$$
f(t)=2 \int_{0}^{t} e^{\tau} e^{-(t-\tau)} d \tau=2 e^{-t} \int_{0}^{t} e^{2 \tau} d \tau=e^{t}-e^{-t}=2 \sinh t
$$

(c)

$$
F(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}=\frac{1}{2} \frac{1}{s^{2}} \frac{2}{s^{2}+4}
$$

Now

$$
\mathcal{L}(t)=\frac{1}{s^{2}}, \quad \mathcal{L}(\sin 2 t)=\frac{2}{s^{2}+4} .
$$

Hence,

$$
f(t)=\frac{1}{2} \int_{0}^{t}(t-\tau) \sin (2 \tau) d \tau=\frac{2 t-\sin 2 t}{8}
$$

(d)

$$
F(s)=\frac{1}{(s-1)^{2}}=\frac{1}{s-1} \frac{1}{s-1}
$$

Now

$$
\mathcal{L}\left(e^{t}\right)=\frac{1}{s-1} .
$$

Hence,

$$
f(t)=\int_{0}^{t} e^{\tau} e^{t-\tau} d \tau=e^{t} \int_{0}^{t} d \tau=t e^{t}
$$

6. Use Laplace transform to solve the initial value problems:
(a) $y^{\prime \prime}+4 y=\cos 2 t, \quad y(0)=0, y^{\prime}(0)=1$.
(\mathbf{T}) (b) $y^{\prime \prime}+3 y^{\prime}+2 y=\left\{\begin{array}{ll}4 t & \text { if } 0<t<1 \\ 8 & \text { if } t>1\end{array} \quad y(0)=y^{\prime}(0)=0\right.$
(c) $y^{\prime \prime}+9 y=\left\{\begin{array}{ll}8 \sin t & \text { if } 0<t<\pi \\ 0 & \text { if } t>\pi\end{array} \quad y(0)=0, y^{\prime}(0)=4\right.$
(d) $y_{1}^{\prime}+2 y_{1}+6 \int_{0}^{t} y_{2}(\tau) d \tau=2 u(t), \quad y_{1}^{\prime}+y_{2}^{\prime}=-y_{2}, \quad y_{1}(0)=-5, y_{2}(0)=6$

Solution:
(a) Taking Laplace Transform on both sides and simplifying $(\mathrm{Y}(\mathrm{s})=\mathcal{L}[\mathrm{y}(\mathrm{t})])$

$$
Y(s)=s /\left(s^{2}+4\right)^{2}+1 /\left(s^{2}+4\right)
$$

Using convolution [or any other technique]

$$
\begin{aligned}
y(t) & =\frac{1}{2} \int_{0}^{t} \sin (2 \tau) \cos (2(t-\tau)) d \tau+\frac{\sin 2 t}{2} \\
& =\frac{t \sin 2 t}{4}+\frac{\sin 2 t}{2}
\end{aligned}
$$

(b) Let $r(t)=4(u(t)-u(t-1)) t+8 u(t-1)=4 u(t-0) t+4 u(t-1)(1-(t-1))$. Taking Laplace Transform on both sides of the ODE, we get

$$
\left(s^{2}+3 s+2\right) Y(s)=R(s) \Longrightarrow Y(s)=\frac{4}{s^{2}(s+1)(s+2)}+e^{-s} \frac{4(s-1)}{s^{2}(s+1)(s+2)}
$$

Using partial fraction and shifting theorem we get

$$
\begin{aligned}
Y(s) & =\left(-\frac{3}{s}+\frac{2}{s^{2}}+\frac{4}{s+1}-\frac{1}{s+2}\right)+e^{-s}\left(\frac{5}{s}-\frac{2}{s^{2}}-\frac{8}{s+1}+\frac{3}{s+2}\right) \\
\Longrightarrow y(t) & =-3+2 t+4 e^{-t}-e^{-2 t}+u(t-1)\left(5-2(t-1)-8 e^{-(t-1)}+3 e^{-2(t-1)}\right)
\end{aligned}
$$

(c) Let $r(t)=8(u(t)-u(t-\pi)) \sin t=8 u(t) \sin t+u(t-\pi) \sin (t-\pi)$. Taking Laplace Transform on both sides of the ODE, we get

$$
\left(s^{2}+9\right) Y(s)=R(s)+4 \Longrightarrow Y(s)=\frac{4}{s^{2}+9}+\frac{R(s)}{s^{2}+9}
$$

We can explicitly write $R(s)$ and then use partial fraction technique.

$$
Y(s)=\frac{4}{s^{2}+9}+\left(1+e^{-\pi s}\right) \frac{8}{\left(s^{2}+1\right)\left(s^{2}+9\right)}=\frac{4}{s^{2}+9}+\left(1+e^{-\pi s}\right)\left(\frac{1}{s^{2}+1}-\frac{1}{s^{2}+9}\right)
$$

This gives

$$
\begin{aligned}
y(t) & =\frac{4}{3} \sin 3 t+\left(\sin t-\frac{1}{3} \sin 3 t\right)+u(t-\pi)\left(\sin (t-\pi)-\frac{1}{3} \sin 3(t-\pi)\right) \\
& =\sin t+\sin 3 t+u(t-\pi)\left(\frac{1}{3} \sin 3 t-\sin t\right)
\end{aligned}
$$

(Otherwise, use convolution as follows

$$
y(t)=\frac{4}{3} \sin 3 t+\frac{1}{3} \int_{0}^{t} r(\tau) \sin 3(t-\tau) d \tau
$$

Thus for $0<t<\pi$, we get

$$
y(t)=\frac{4}{3} \sin 3 t+\frac{8}{3} \int_{0}^{t} \sin \tau \sin 3(t-\tau) d \tau=\frac{4}{3} \sin 3 t+\sin t-\frac{1}{3} \sin 3 t=\sin 3 t+\sin t
$$

and for $t>\pi$, we get $[$ since $r(t)=0$]

$$
y(t)=\frac{4}{3} \sin 3 t+\frac{8}{3} \int_{0}^{\pi} \sin \tau \sin 3(t-\tau) d \tau+\frac{1}{3} \int_{\pi}^{t} 0 \sin 3(t-\tau) d \tau=\frac{4}{3} \sin 3 t
$$

This solution matches with that obtained earlier.)
(d) Taking Laplace transform, we get

$$
\begin{aligned}
& (s+2) Y_{1}+\frac{6 Y_{2}}{s}=\frac{2}{s}-5 \\
& s Y_{1}+(s+1) Y_{2}=1
\end{aligned}
$$

Solving

$$
\begin{aligned}
& Y_{1}(s)=\frac{1}{s}-\frac{12}{5} \frac{1}{s-1}-\frac{18}{5} \frac{1}{s+4} \\
& Y_{2}(s)=\frac{6}{5} \frac{1}{s-1}+\frac{24}{5} \frac{1}{s+4}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& y_{1}(t)=1-\frac{12}{5} e^{t}-\frac{18}{5} e^{-4 t} \\
& y_{2}(t)=\frac{6}{5} e^{t}+\frac{24}{5} e^{-4 t}
\end{aligned}
$$

7. Solve the integral equations:
(a) $y(t)+\int_{0}^{t} y(\tau) d \tau=u(t-a)+u(t-b)$
(b) $e^{-t}=y(t)+2 \int_{0}^{t} \cos (t-\tau) y(\tau) d \tau$
(c) $3 \sin 2 t=y(t)+\int_{0}^{t}(t-\tau) y(\tau) d \tau$

Solution:

(a) Taking Laplace Transform, we get

$$
Y(s)=\frac{e^{-a s}}{s+1}+\frac{e^{-b s}}{s+1} \Longrightarrow y(t)=u(t-a) e^{-(t-a)}+u(t-b) e^{-(t-b)}
$$

(b) Taking Laplace Transform, we get

$$
Y(s)=\frac{s^{2}+1}{(s+1)^{3}}=\frac{1}{1+s}-\frac{2}{(s+1)^{2}}+\frac{2}{(s+1)^{3}}
$$

Thus,

$$
y(t)=e^{-t}(t-1)^{2}
$$

(c) Taking Laplace Transform, we get

$$
Y(s)=-\frac{2}{s^{2}+1}+\frac{8}{\left(s^{2}+4\right)} \Longrightarrow y(t)=-2 \sin t+4 \sin 2 t
$$

