
ODE: Assignment-7

Frobenius method and Bessel function

1. For each of the following, verify that the origin is a regular singular point and find two

linearly independent solutions:

(a) 9x2y′′ + (9x2 + 2)y = 0 (b) x2(x2 − 1)y′′ − x(1 + x2)y′ + (1 + x2)y = 0

(T) (c) xy′′ + (1− 2x)y′ + (x− 1)y = 0 (d) x(x− 1)y′′ + 2(2x− 1)y′ + 2y = 0

Solution:

(a)

The given ODE can be written as

y′′ +
9x2 + 2

9x2
y = 0

Hence x = 0 is a regular singular point. Let y =
∑

n=0 anx
n+r, a0 6= 0. This gives∑

n=0

9(n+ r)(n+ r − 1)anx
n+r +

∑
n=0

9anx
n+r+2 +

∑
n=0

2anx
n+r = 0

which can be written as∑
n=0

9(n+ r)(n+ r − 1)anx
n+r +

∑
n=2

9an−2x
n+r +

∑
n=0

2anx
n+r = 0

This can be rearranged as (after canceling xr)(
9r(r−1)+2

)
a0 +

(
9r(r+1)+2

)
a1x+

∑
n=2

(
9(n+r)(n+r−1)an+9an−2 +2an

)
xn = 0

This implies(
9r(r−1)+2

)
a0 = 0,

(
9r(r+1)+2

)
a1 = 0 and an = − 9an−2

9(n+ r)(n+ r − 1) + 2
, n ≥ 2.

Since a0 6= 0, we have 9r(r − 1) + 2 = 0 =⇒ r = 2/3 = r1, r = 1/3 = r2. Here

r1 − r2 = 1/3 is not an integer and we have two independent Frobenius series solutions.

With r = r1 or r = r2, 9r(r + 1) + 2 6= 0 =⇒ a1 = 0. This leads to a2n+1 = 0, n ≥ 0.

Also,

an = − 9an−2
(3n+ 3r − 2)(3n+ 3r − 1)

, n ≥ 2.

With r = r1 = 2/3 we find

y1(x) = x2/3
∑
n=0

a2nx
2n, a0 = 1, a2n = − 3a2n−2

2n(6n+ 1)
, n ≥ 1.

With r = r1 = 1/3 we find

y2(x) = x1/3
∑
n=0

a2nx
2n, a0 = 1, a2n = − 3a2n−2

2n(6n− 1)
, n ≥ 1.



(b)

The given ODE can be written as

y′′ − 1 + x2

x(x2 − 1)
y′ +

1 + x2

x2(x2 − 1)
= 0

Hence x = 0 is a regular singular point. Let y =
∑

n=0 anx
n+r, a0 6= 0. This gives∑

n=0

(
(n+r)(n+r−1)an(xn+r+2−xn+r)−(n+r)an(xn+r+xn+r+2)+an(xn+r+xn+r+2)

)
= 0

which can be written as∑
n=2

(
(n+r−2)(n+r−3)−(n+r−2)+1

)
an−2x

n+r−
∑
n=0

(
(n+r)(n+r−1)+(n+r)−1

)
anx

n+r = 0

This can be rearranged as (after canceling xr)

−
(
r2 − 1

)
a0 −

(
(r + 1)2 − 1

)
a1x+

∑
n=2

(
(n+ r − 3)2an−2 −

(
(n+ r)2 − 1

)
an

)
xn = 0

This implies(
r2 − 1

)
a0 = 0,

(
(r + 1)2 − 1

)
a1 = 0, and an =

(n+ r − 3)2

(n+ r)2 − 1
an−2, n ≥ 2.

Since a0 6= 0, we have r2 − 1 = 0 =⇒ r = 1 = r1, r = −1 = r2. Here r1 − r2 = 2 is an

integer and we may or may not have two independent Frobenius series solutions.

With r = r1, (r + 1)2 − 1 6= 0 =⇒ a1 = 0. Also,

an =
(n− 2)2

n(n+ 2)
an−2, n ≥ 2 =⇒ an = 0, n ≥ 1.

Hence

y1(x) = x, a0 = 1.

For the other solution, let y2 = y1u(x) = xu (reduction of order technique)

x(x2 − 1)u′′ + (x2 − 3)u′ = 0 =⇒ u′′

u′
=

1

1 + x
− 1

1− x
− 3

x
=⇒ u′ = 1/x3 − 1/x

which integrating again gives

u = − log x− 1

2x2

Hence y2 = x lnx+ 1/(2x) (ignoring the negative sign)

(c)

The given ODE can be written as

y′′ +
1− 2x

x
y′ +

x− 1

x
= 0



Hence x = 0 is a regular singular point. Let y =
∑

n=0 anx
n+r, a0 6= 0. This gives∑

n=0

(
(n+ r)(n+ r − 1)anx

n+r−1 + (n+ r)an(xn+r−1 − 2xn+r) + an(xn+r+1 − xn+r)
)

= 0

which can be written as∑
n=2

an−2x
n+r−1−

∑
n=1

(
2(n+r−1)+1

)
an−1x

n+r−1+
∑
n=0

(
(n+r)(n+r−1)+(n+r)

)
anx

n+r−1 = 0

This can be rearranged as (after canceling xr−1)

r2a0 +
(

(r+1)2a1−(2r+1)a0

)
x+
∑
n=2

(
(n+r)2an−

(
2(n+r−1)+1

)
an−1 +an−2

)
xn = 0

This implies

r2a0 = 0, (r + 1)2a1 = (2r + 1)a0, (n+ r)2an =
(
2(n+ r)− 1

)
an−1 − an−2, n ≥ 2

Now a0 6= 0 =⇒ r = r1 = 0, r = r2 = 0. Since the indicial equation has double roots,

the given equation has only one independent Frobenius series solution. We take r = 0

and this gives a1 = a0. We also have

an =
2n− 1

n2
an−1 −

1

n2
an−2, n ≥ 2.

With a0 = 1 we get a1 = 1. This leads to a2 = 1/2!, a3 = 1/3!. We prove an = 1/n!

by induction. Clearly the induction hypothesis is true for n = 1, 2, 3. Let it be true for

n = k. For n = k + 1, we have

ak+1 =
2k + 1

(k + 1)2
ak −

1

(k + 1)2
ak−1 =

1

(k + 1)2(k − 1)!

(
2k + 1

k
− 1

)
=

1

(k + 1)!

Hence

y1(x) =
∑
n=0

xn

n!
= ex

For other solution let y2 = y1u(x) = exu. This gives

xu′′ + u′ = 0 =⇒ u′ = 1/x =⇒ u = lnx

Hence y2(x) = ex lnx

(d)

The given ODE can be written as

y′′ +
2(2x− 1)

x(x− 1)
y′ +

2

x(x− 1)
y = 0

Hence x = 0 is a regular singular point. Let y =
∑

n=0 anx
n+r, a0 6= 0. This gives∑

n=0

(
(n+ r)(n+ r − 1)an(xn+r − xn+r−1) + (n+ r)an(4xn+r − 2xn+r−1) + 2anx

n+r
)

= 0



which can be written as∑
n=1

(
(n+r−1)(n+r−2)+4(n+r−1)+2

)
an−1x

n+r−1−
∑
n=0

(
(n+r)(n+r−1)+2(n+r)

)
anx

n+r−1 = 0

This can be rearranged as (after canceling xr−1)

(r2 + r)a0 −
∑
n=1

(
(n+ r)(n+ r + 1)an −

(
(n+ r − 1)(n+ r + 2) + 2

)
an−1

)
xn = 0

This implies

(r2 + r)a0 = 0, (n+ r)(n+ r + 1)an −
(
(n+ r − 1)(n+ r + 2) + 2

)
an−1 = 0, n ≥ 1

Now a0 6= 0 =⇒ r = r1 = 0, r = r2 = −1. Hence r1 − r2 = 1 is an integer and hence

the ODE may or may not have two independent Frobenius series solution.

With r = r1 = 0,

n(n+ 1)an =
(
(n− 1)(n+ 2) + 2

)
an−1 =⇒ an = an−1 =⇒ an = a0, n ≥ 1.

Hence (with a0 = 1)

y1(x) =
∑
n=0

xn =
1

1− x

For the other solution, let y2 = y1u(x). This gives

xu′′ + 2u′ = 0 =⇒ u′ =
1

x2
=⇒ u = −1/x

Hence (neglecting the negative sign)

y2(x) =
1

x(1− x)

We can write

y2(x) =
1

x
+

1

1− x
Since the last term is y1(x), we can take y2(x) = 1/x

Note: If we continue the Frobenius series method with r = r2 = −1, then from the

recurrence relation

n(n− 1)an = n(n− 1)an−1, n ≥ 1.

For n = 1, the relation is automatically satisfied for any value of a1. We may take

a1 = 0. This leads to an = 0 for n ≥ 1. Then we again get (taking a0 = 1)

y2(x) =
1

x

2. Show that 2x3y′′ + (cos 2x− 1)y′ + 2xy = 0 has only one Frobenius series solution.

Solution:



We can write the ODE as

2x2y′′ +
cos 2x− 1

x2
xy′ + 2y = 0

Since

lim
x→0

cos 2x− 1

x2
= −2,

the indicial equation is

2r(r − 1)− 2r + 2 =⇒ r2 − 2r + 1 =⇒ r = 1, 1.

Since the indicial equation has double roots, it has only one Frobenius series solution.

3. (T) Reduce x2y′′ + xy′ + (x2 − 1/4)y = 0 to normal form and hence find its general

solution.

Solution:

Suppose y(x) = u(x)v(x). Hence

x2(u′′v + 2u′v′ + uv′′) + x(u′v + uv′) +

(
x2 − 1

4

)
uv = 0

or

x2vu′′ + (2x2v′ + xv)u′ +

(
(x2v′′ + xv′ +

(
x2 − 1

4

)
v

)
u = 0.

To make the 2nd term vanish, we set

2x2v′ + xv = 0 =⇒ 2xv′ + v = 0 =⇒ v =
1√
x

Using this transformation the given ODE reduces to

u′′ + u = 0.

Thus general solution of the reduced equation is u = A sinx + B cosx. For the original

equation, the general solution is

y = A
sinx√
x

+B
cosx√
x
.

4. Using recurrence relations, show the following for Bessel function Jn:

(i)(T) J ′′0 (x) = −J0(x) + J1(x)/x (ii) xJ ′n+1(x) + (n+ 1)Jn+1(x) = xJn(x)

Solution:

Useful identities for problems with Bessel’s functions:

(
xνJν

)′
= xνJν−1,

(
x−νJν

)′
= −x−νJν+1,

Jν−1 + Jν+1 = 2νJν/x, Jν−1 − Jν+1 = 2J ′ν .



(i)

2J ′0(x) = J−1(x)− J1(x) = −2J1(x)

=⇒ 2J ′′0 (x) = −2J ′1(x) = J2(x)− J0(x) = 2J1(x)/x− 2J0(x)

=⇒ J ′′0 (x) = J1(x)/x− J0(x)

(ii) (
xn+1Jn+1(x)

)′
= xn+1Jn(x) =⇒ xJ ′n+1(x) + (n+ 1)Jn+1(x) = xJn(x)

5. Express

(i)(T) J3(x) in terms of J1(x) and J0(x) (ii) J ′2(x) in terms of J1(x) and J0(x)

(iii) J4(ax) in terms of J1(ax) and J0(ax)

Solution:

(i) Using the identity Jν+1 = 2νJν/x− Jν−1 we have

J3(x) =
4

x
J2(x)− J1(x) =

4

x

(
2

x
J1(x)− J0(x)

)
− J1(x)

=

(
8

x2
− 1

)
J1(x)− 4

x
J0(x)

(ii) Using identities involving Bessel’s function, we get

2J ′2(x) = J1(x)− J3(x) = J1(x)−
(

4

x
J2(x)− J1(x)

)
= 2J1(x)− 4

x

(
2

x
J1(x)− J0(x)

)

Hence J ′2(x) =
2

x
J0(x) +

(
1− 4

x2

)
J1(x)

(iii) Using the identity Jν+1 = 2νJν/x− Jν−1, we get

J4(ax) =
6

ax
J3(ax)− J2(ax) =

6

ax

(
4

ax
J2(ax)− J1(ax)

)
− J2(ax)

=

(
24

a2x2
− 1

)
J2(ax)− 6

ax
J1(ax)

=

(
24

a2x2
− 1

)(
2

ax
J1(ax)− J0(ax)

)
− 6

ax
J1(ax)

=
1

ax

(
48

a2x2
− 8

)
J1(ax)−

(
24

a2x2
− 1

)
J0(ax)

6. Prove that between each pair of consecutive positive zeros of Bessel function Jν(x), there

is exactly one zero of Jν+1(x) and vice versa.

Solution:

Let α and β be two consecutive positive zeros of Jν+1. Let f(x) = xν+1Jν+1. Then

f(α) = f(β) = 0. Thus there exists c ∈ (α, β) such that f ′(c) = 0. Taking γ = ν + 1

in [xγJγ]
′ = xγJγ−1, we see that Jν(c) = 0. Thus there exists a zero of Jν between



consecutive zeros of Jν+1. Similarly taking γ = ν in [x−γJγ]
′ = −x−γJγ+1, we conclude

that there exists a zero of Jν+1 between consecutive positive zeros of Jν . To prove

uniqueness, let there exist two zero of Jν between consecutive zeros α and β of Jν+1.

This implies that there exist a zero of Jν+1 between α and β, which contradicts the fact

that α and β are consecutive zeroes.

7. Show that the Bessel functions Jν (ν ≥ 0) satisfy∫ 1

0

xJν(λmx)Jν(λnx) dx =
1

2
J2
ν+1(λn)δmn,

where λi are the positive zeros of Jν .

Solution:

We know that y(t) = Jν(t) satisfies

ÿ +
1

t
ẏ +

(
1− ν2

t2

)
y = 0, · ≡ d

dt

Let t = λx =⇒ y(t) = y(λx) = u(x). Then u′(x) = λẏ and u′′(x) = λ2ÿ. Hence

u(x) = Jν(λx) satisfies

u′′ +
1

x
u′ +

(
λ2 − ν2

x2

)
u = 0, (1)

Similarly, v(x) = Jν(µx) satisfies

v′′ +
1

x
v′ +

(
µ2 − ν2

x2

)
v = 0. (2)

Multiplying (1) by v and (2) by u and subtracting, we find

d

dx

[
x(u′v − uv′)

]
=
(
µ2 − λ2

)
xuv.

Integrating from x = 0 to x = 1, we find(
µ2 − λ2

) ∫ 1

0

xuv dx = u′(1)v(1)− u(1)v′(1). (3)

Now u(1) = Jν(λ) and v(1) = Jν(µ). Let us choose λ = λm and µ = λn, where λm and

λn are positive zeros of Jν . Then u(1) = v(1) = 0 and thus find

(λ2n − λ2m)

∫ 1

0

xJν(λmx)Jν(λnx) dx = 0.

If n 6= m, then ∫ 1

0

xJν(λmx)Jν(λnx) dx = 0.

Now from (3), we find [since u′(x) = λJ ′ν(λx) etc]∫ 1

0

xJ2
ν (λx) dx = lim

µ→λ

λJ ′ν(λ)Jν(µ)− µJν(λ)J ′ν(µ)

µ2 − λ2

=
λ
(
J ′ν(λ)

)2 − Jν(λ)J ′ν(λ)− λJν(λ)J ′′ν (λ)

2λ



Now if we take λ = λn, where λn is a positive zero of Jν , then we find∫ 1

0

xJ2
ν (λnx) dx =

1

2

(
J ′ν(λn)

)2
.

Now from (
x−νJν(x)

)′
= −x−νJν+1(x) =⇒ J ′ν(x)− ν

x
Jν(x) = −Jν+1(x),

we find by substituting x = λn

J ′ν(λn) = −Jν+1(λn).

Thus, finally we get ∫ 1

0

xJ2
ν (λnx) dx =

1

2
J2
ν+1(λn).

Laplace Transform

1. Let F (s) be the Laplace transform of f(t). Find the Laplace transform of f(at) (a > 0).

Solution:

L
(
f(at)

)
=

∫ ∞
0

e−stf(at) dt =
1

a

∫ ∞
0

e−(s/a)τf(τ) dτ =
1

a
F (s/a)

2. Find the Laplace transforms:

(a) [t] (greatest integer function), (b) tm cosh bt (m ∈ non-negative integers),

(T)(c) et sin at, (d)
et sin at

t
, (e)

sin t cosh t

t
, (f) f(t) =

{
sin 3t, 0 < t < π,

0, t > π,

Solution:

(a)

L
(
[t]
)

=

∫ 2

1

e−st dt+ 2

∫ 3

2

e−st dt+ 3

∫ 4

3

e−st dt+ · · ·

=
e−s

s
(1 + e−s + e−2s + e−3s + · · · ) =

e−s

s(1− e−s)
(s > 0 =⇒ 0 < e−s < 1)

(b)

L(tm) =
m!

sm+1
=⇒ L(tm cosh bt) =

1

2
L(ebttm + e−bttm)

=
m!

2

(
1

(s− b)m+1
+

1

(s+ b)m+1

)
(c)

L(sin at) =
a

s2 + a2
=⇒ L(et sin at) =

a

(s− 1)2 + a2



(d) Use L
(
f(t)/t

)
=
∫∞
s
F (s) ds. Now

L(sin at) =
a

s2 + a2

=⇒ L
(

sin at

t

)
= a

∫ ∞
s

ds

s2 + a2
=
π

2
− tan−1(s/a)

=⇒ L
(
et sin at

t

)
=

π

2
− tan−1

(
s− 1

a

)
(e) Using result of the previous question

L
(

sin t

t

)
=
π

2
− tan−1(s) =⇒ L

(
cosh t sin t

t

)
=

1

2

(
et sin t

t
+
e−t sin t

t

)

=
1

2

(
π − tan−1(s− 1)− tan−1(s+ 1)

)
(f)

L
(
f(t)

)
=

∫ ∞
0

e−stf(t) dt =

∫ π

0

e−st sin 3t dt =
3(1 + e−πs)

s2 + 9

1. Find the Laplace transforms (Hint: use second shifting theorem):

(a) f(t) =


1, 0 < t < π,

0, π < t < 2π,

cos t, t > 2π,

(b) f(t) =


0, 0 < t < 1,

cos(πt), 1 < t < 2,

0, t > 2

Solution:

(a) Consider g(t) = u(t)−u(t−π)+u(t−2π) cos t = u(t)−u(t−π)+u(t−2π) cos(t−2π)

L
(
f(t)

)
= L

(
g(t)

)
=

1

s
− e−πs1

s
+ e−2πs

s

s2 + 1

(b) Consider g(t) =
(
u(t−1)−u(t−2)

)
cos(πt) = −u(t−1) cosπ(t−1)−u(t−2) cosπ(t−2)

L
(
f(t)

)
= L

(
g(t)

)
= −

(
e−s

s

s2 + π2
+ e−2s

s

s2 + π2

)
2. Find the inverse Laplace transforms of

(a) tan−1(a/s), (b)ln
s2 + 1

(s+ 1)2
, (T)(c)

s+ 2

(s2 + 4s− 5)2
, (d)

se−πs

s2 + 4
, (e)

(1− e−2s)(1− 3e−2s)

s2
.

Solution:

(a) Use L
(
− tf(t)

)
= F ′(s). Thus,

F ′(s) = − a

s2 + a2
=⇒ L−1

(
F ′(s)

)
= − sin at =⇒ f(t) =

sin at

t



(b)

F ′(s) =
2s

s2 + 1
− 2

s+ 1
=⇒ L−1

(
F ′(s)

)
= 2(cos t− e−t) =⇒ f(t) =

2(e−t − cos t)

t

(c)

F (s) =
s+ 2

(s2 + 4s− 5)2
=

1

12

(
1

(s− 1)2
− 1

(s+ 5)2

)
F ′(s) =

1

12

(
2

(s+ 5)3
− 2

(s− 1)3

)
=⇒ L−1

(
F ′(s)

)
=
t2e−5t − t2et

12

Thus,

f(t) = t
et − e−5t

12

(d)
se−πs

s2 + 4
= e−πsL(cos 2t) = L

(
u(t− π) cos 2(t− π)

)
Thus,

L−1
(
se−πs

s2 + 4

)
= u(t− π) cos 2t

(e)
(1− e−2s)(1− 3e−2s)

s2
=

1

s2
− 4e−2s

s2
+

3e−4s

s2

Thus,

f(t) = t− 4u(t− 2)(t− 2) + 3(t− 4)u(t− 4)

3. Using convolution, find the inverse Laplace transforms:

(T)(a)
1

s2 − 5s+ 6
, (b)

2

s2 − 1
, (c)

1

s2(s2 + 4)
, (d)

1

(s− 1)2
.

Solution:

(a)

F (s) =
1

s2 − 5s+ 6
=

1

(s− 3)(s− 2)

Now

L(e3t) =
1

s− 3
, L(e2t) =

1

s− 2
.

Hence,

f(t) =

∫ t

0

e3τe2(t−τ)dτ = e2t
∫ t

0

eτdτ = e3t − e2t

(b)

F (s) =
2

s2 − 1
=

2

(s+ 1)(s− 1)

Now

L(et) =
1

s− 1
, L(e−t) =

1

s+ 1
.

Hence,

f(t) = 2

∫ t

0

eτe−(t−τ)dτ = 2e−t
∫ t

0

e2τdτ = et − e−t = 2 sinh t



(c)

F (s) =
1

s2(s2 + 4)
=

1

2

1

s2
2

s2 + 4

Now

L(t) =
1

s2
, L (sin 2t) =

2

s2 + 4
.

Hence,

f(t) =
1

2

∫ t

0

(t− τ) sin(2τ)dτ =
2t− sin 2t

8

(d)

F (s) =
1

(s− 1)2
=

1

s− 1

1

s− 1

Now

L(et) =
1

s− 1
.

Hence,

f(t) =

∫ t

0

eτet−τdτ = et
∫ t

0

dτ = tet

6. Use Laplace transform to solve the initial value problems:

(a) y′′ + 4y = cos 2t, y(0) = 0, y′(0) = 1.

(T)(b) y′′ + 3y′ + 2y =

{
4t if 0 < t < 1

8 if t > 1
y(0) = y′(0) = 0

(c) y′′ + 9y =

{
8 sin t if 0 < t < π

0 if t > π
y(0) = 0, y′(0) = 4

(d) y′1 + 2y1 + 6

∫ t

0

y2(τ) dτ = 2u(t), y′1 + y′2 = −y2, y1(0) = −5, y2(0) = 6

Solution:

(a) Taking Laplace Transform on both sides and simplifying (Y(s)=L[y(t)])

Y (s) = s/(s2 + 4)2 + 1/(s2 + 4)

Using convolution [or any other technique]

y(t) =
1

2

∫ t

0

sin(2τ) cos(2(t− τ))dτ +
sin 2t

2

=
t sin 2t

4
+

sin 2t

2

(b) Let r(t) = 4
(
u(t)−u(t−1)

)
t+ 8u(t−1) = 4u(t−0)t+ 4u(t−1)(1− (t−1)). Taking

Laplace Transform on both sides of the ODE, we get

(s2 + 3s+ 2)Y (s) = R(s) =⇒ Y (s) =
4

s2(s+ 1)(s+ 2)
+ e−s

4(s− 1)

s2(s+ 1)(s+ 2)



Using partial fraction and shifting theorem we get

Y (s) =

(
−3

s
+

2

s2
+

4

s+ 1
− 1

s+ 2

)
+ e−s

(
5

s
− 2

s2
− 8

s+ 1
+

3

s+ 2

)
=⇒ y(t) = −3 + 2t+ 4e−t − e−2t + u(t− 1)

(
5− 2(t− 1)− 8e−(t−1) + 3e−2(t−1)

)
(c) Let r(t) = 8(u(t)− u(t− π)) sin t = 8u(t) sin t+ u(t− π) sin(t− π). Taking Laplace

Transform on both sides of the ODE, we get

(s2 + 9)Y (s) = R(s) + 4 =⇒ Y (s) =
4

s2 + 9
+

R(s)

s2 + 9

We can explicitly write R(s) and then use partial fraction technique.

Y (s) =
4

s2 + 9
+ (1 + e−πs)

8

(s2 + 1)(s2 + 9)
=

4

s2 + 9
+ (1 + e−πs)

(
1

s2 + 1
− 1

s2 + 9

)
This gives

y(t) =
4

3
sin 3t+

(
sin t− 1

3
sin 3t

)
+ u(t− π)

(
sin(t− π)− 1

3
sin 3(t− π)

)
= sin t+ sin 3t+ u(t− π)

(
1

3
sin 3t− sin t

)
(

Otherwise, use convolution as follows

y(t) =
4

3
sin 3t+

1

3

∫ t

0

r(τ) sin 3(t− τ) dτ

Thus for 0 < t < π, we get

y(t) =
4

3
sin 3t+

8

3

∫ t

0

sin τ sin 3(t− τ) dτ =
4

3
sin 3t+ sin t− 1

3
sin 3t = sin 3t+ sin t

and for t > π, we get [since r(t) = 0]

y(t) =
4

3
sin 3t+

8

3

∫ π

0

sin τ sin 3(t− τ) dτ +
1

3

∫ t

π

0 sin 3(t− τ) dτ =
4

3
sin 3t

This solution matches with that obtained earlier.
)

(d) Taking Laplace transform, we get

(s+ 2)Y1 +
6Y2
s

=
2

s
− 5

sY1 + (s+ 1)Y2 = 1

Solving

Y1(s) =
1

s
− 12

5

1

s− 1
− 18

5

1

s+ 4

Y2(s) =
6

5

1

s− 1
+

24

5

1

s+ 4



Thus,

y1(t) = 1− 12

5
et − 18

5
e−4t

y2(t) =
6

5
et +

24

5
e−4t

7. Solve the integral equations:

(a) y(t) +

∫ t

0

y(τ) dτ = u(t− a) + u(t− b)

(b) e−t = y(t) + 2

∫ t

0

cos(t− τ)y(τ) dτ

(c) 3 sin 2t = y(t) +

∫ t

0

(t− τ)y(τ) dτ

Solution:

(a) Taking Laplace Transform, we get

Y (s) =
e−as

s+ 1
+

e−bs

s+ 1
=⇒ y(t) = u(t− a)e−(t−a) + u(t− b)e−(t−b)

(b) Taking Laplace Transform, we get

Y (s) =
s2 + 1

(s+ 1)3
=

1

1 + s
− 2

(s+ 1)2
+

2

(s+ 1)3

Thus,

y(t) = e−t(t− 1)2

(c) Taking Laplace Transform, we get

Y (s) = − 2

s2 + 1
+

8

(s2 + 4)
=⇒ y(t) = −2 sin t+ 4 sin 2t


