Conjugate Gradient Method

This note is mainly based on 'Numerical Analysis' by Burden and Faires.
It was first developed as direct method to solve a system of linear equations $A x=b$ but was found to be inferior to Gauss elimination. However, it can can be used as an iterative method for a sparse system with predictable pattern.

Here the matrix A is assumed to be symmetric and positive definite. For two n-vectors u and v, we define the standard inner product $(u, v)=u^{t} v=\sum_{i=1}^{n} u_{i} v_{i}$. For a positive definite matrix A, we define A-inner product of two vectors u and v by $(u, v)_{A}=(u, A v)=u^{t} A v=$ $(A u)^{t} v=(A u, v)$. As with inner product, there is an associated norm $\|u\|_{A}=\sqrt{(u, A u)}$.
Theorem: The vector x^{*} is a solution to the symmetric positive definite linear system $A x=b$ if and only if x^{*} minimizes the value of $f(x)=\frac{1}{2}(x, x)_{A}-(x, b)$.
Proof: For u and any $v \neq 0$, consider

$$
f(u+t v)=\frac{1}{2}(u+t v, u+t v)_{A}-(u+t v, b)=f(u)+t\left((u, v)_{A}-(v, b)\right)+\frac{t^{2}}{2}(v, v)_{A}
$$

The above can be written as $f(u+t v) \equiv h(t)=\alpha+\beta t+\frac{1}{2} \gamma t^{2}$ with $\gamma>0$. Hence it's minimum occurs at $t=\hat{t}$ given by $\hat{t}=-\beta / \gamma$ and $h(\hat{t})=\alpha-\beta^{2} / 2 \gamma$. Hence $h(\hat{t}) \leq \alpha$ and $h(\hat{t})=\alpha$ only when $\beta=0$. Note that $(u, v)_{A}-(v, b)=(A u-b, v) \Longrightarrow \hat{t}=(b-A u, v) /(v, A v)$ and $f(u+\hat{t v}) \leq f(u)$ for all $v \neq 0$ unless $(b-A u, v)=0$ for which $f(u+\hat{t} v)=f(u)$.

Let x^{*} satisfies $A x=b$ and then $\left(b-A x^{*}, v\right)=0$ for any vector v. Now $f\left(x^{*}+t v\right) \geq f\left(x^{*}+\right.$ $\hat{t v})$ for any t since minimum attained at \hat{t}. But $f(x+\hat{t v})=f\left(x^{*}\right)$ and hence $f\left(x^{*}+t v\right) \geq f\left(x^{*}\right)$. Now $x=x^{*}+t v$ is an arbitrary vector and hence $f(x) \geq f\left(x^{*}\right)$. Consequently $f(x)$ cannot be made smaller than $f\left(x^{*}\right)$ and thus x^{*} minimizes $f(x)$.
Conversely, let x^{*} minimizes $f(x)$. Then $f\left(x^{*}\right) \leq f\left(x^{*}+\hat{t v}\right)$ for any nonzero vector v. But $f\left(x^{*}+\hat{t v}\right) \leq f\left(x^{*}\right)$ which implies that $f\left(x^{*}\right)=f\left(x^{*}+\hat{t v}\right) \Longrightarrow\left(b-A x^{*}, v\right)=0$ for any nonzero vector v. If $b-A x^{*} \neq 0$, we take $v=b-A x^{*}$, which gives $\left\|b-A x^{*}\right\|^{2}=0 \Longrightarrow A x^{*}=b$.

The above theorem shows the way to proceed. We choose an $x^{(0)}$ which is an initial approximation to x^{*}. If $b-A x^{(0)} \neq 0$, we chose a nonzero $v^{(1)}$ (search direction) and $t_{1}=$ $\left(b-A x^{(0)}, v^{(1)}\right) /\left(v^{(1)}, v^{(1)}\right)_{A}$ so that $x^{(1)}=x^{(0)}+t_{1} v^{(1)}$ is a better approximation. This suggests the following algorithm:

Algorithm

Choose an initial $x^{(0)}$ and $v^{(1)} \neq 0$.
For $k=1,2,3, \cdots$,
Calculate $t_{k}=\left(b-A x^{(k-1)}, v^{(k)}\right) /\left(v^{(k)}, v^{(k)}\right)_{A}=\left(r^{(k-1)}, v^{(k)}\right) /\left(v^{(k)}, v^{(k)}\right)_{A}$ $x^{(k)}=x^{(k-1)}+t_{k} v^{(k)}$.
Search the new direction $v^{(k+1)}$.

Finding search directions:

Note that $f(x)=\frac{1}{2}(x, x)_{A}-(x, b)$ and solution x^{*} of $A x=b$ minimizes $f(x)$. Note that ∇f is the direction of fastest increase of f at a point and hence $-\nabla f=b-A x=r$ where r is the residual vector gives the direction of fastest decrease. Hence one way to choose search direction is by $v^{(k+1)}=r^{(k)}=b-A x^{(k)}$. Choosing this way is called method of steepest descent which is quite slow for linear system.

An alternative approach is to choose a set of nonzero direction vectors (called conjugate directions) $v^{(1)}, v^{(2)}, \cdots, v^{(n)}$ which satisfy $\left(v^{(i)}, v^{(j)}\right)_{A}=0$ for $i \neq j$. This is called A-orthogonality conditions.
Theorem: With the choice of conjugate directions $v^{(1)}, v^{(2)}, \cdots, v^{(n)}$, it can be proved that $A x^{(n)}=b$. (Here $x^{(n)}$ is obtained using algorithm given in first page)
Remark: This theorem implies that if exact arithmetic is used with conjugate directions, then the algorithm converges in n-steps. In that sense, it is comparable to direct methods. However, the number of iterations becomes large when n is large. Hence, we terminate the iteration when suitable accuracy is achieved.
Theorem: It can be proved that the residual vectors $r^{(k)}=b-A x^{(k)}$ for $k=1,2, \cdots, n$ of the conjugate direction method satisfy $\left(r^{(k)}, v^{(j)}\right)=0$ for $j=1,2, \cdots, k$.

Conjugate gradient method:

The conjugate gradient method of Hestenes and Stiefel chooses the search directions $v^{(k)}$ during the iterative process so that the residual vectors $r^{(k)}$ are mutually orthogonal. To construct the direction vectors $v^{(1)}, v^{(2)}, \cdots, v^{(n)}$ and the approximations $x^{(1)}, x^{(2)}, \cdots, x^{(n)}$, we proceed as follows.
We start with an initial approximation $x^{(0)}$ and if $x^{(0)}$ is not a solution, then we use the steepest descent direction $r^{(0)}=b-A x^{(0)}$ as $v^{(1)}$.
Assume that conjugate directions $v^{(1)}, v^{(2)}, \cdots, v^{(k)}$ and approximate solutions $x^{(1)}, x^{(2)}, \cdots, x^{(k)}$ have already been computed, where
$x^{(k)}=x^{(k-1)}+t_{k} v^{(k)}$ and $\left(v^{(i)}, v^{(j)}\right)_{A}=0, \quad\left(r^{(i)}, r^{(j)}\right)=0$ for $i \neq j$.
If $x^{(k)}$ is the solution of $A x=b$, then nothing to do. Otherwise,
$r^{(k)}=b-A x^{(k)} \neq 0$ and $\left(r^{(k)}, v^{(j)}\right)=0$ for $j=1,2, \cdots, k$.
We generate $v^{(k+1)}$ from $r^{(k)}$ by setting $v^{(k+1)}=r^{(k)}+s_{k} v^{(k)}$ and choose s_{k} so that $\left(v^{(k)}, v^{(k+1)}\right)_{A}=0 \Longrightarrow s_{k}=-\left(v^{(k)}, r^{(k)}\right)_{A} /\left(v^{(k)}, v^{(k)}\right)_{A} \cdots \cdots\left(^{*}\right)$
It can be also shown that $\left(v^{(j)}, v^{(k+1)}\right)_{A}=0$ for $j=1,2, \cdots, k$ and hence $v^{(1)}, v^{(2)}, \cdots, v^{(k+1)}$ is an A-orthogonal set. Having chosen $v^{(k+1)}$, we compute $t_{k+1}=\left(v^{(k+1)}, r^{(k)}\right) /\left(v^{(k+1)}, v^{(k+1)}\right)_{A}=\left(r^{(k)}, r^{(k)}\right) /\left(v^{(k+1)}, v^{(k+1)}\right)_{A}+s_{k}\left(v^{(k)}, r^{(k)}\right) /\left(v^{(k+1)}, v^{(k+1)}\right)_{A}$.
Since $\left(v^{(k)}, r^{(k)}\right)=0$ (by the theorem stated above), we have
$t_{k+1}=\left(r^{(k)}, r^{(k)}\right) /\left(v^{(k+1)}, v^{(k+1)}\right)_{A} \cdot \cdots \cdots\left({ }^{* *}\right)$
Thus $x^{(k+1)}=x^{(k)}+t_{k+1} v^{(k+1)}$ is obtained.
To compute $r^{(k)}=b-A x^{(k)}$, we have
$r^{(k)}=b-A x^{(k)}=b-A\left\{x^{(k-1)}+t_{k} A v^{(k)}\right\} \Longrightarrow r^{(k)}=r^{(k-1)}-t_{k} A v^{(k)}$. This gives
$\left(r^{(k)}, r^{(k)}\right)=\left(r^{(k-1)}, r^{(k)}\right)-t_{k}\left(A v^{(k)}, r^{(k)}\right)=-t_{k}\left(r^{(k)}, A v^{(k)}\right)$ (since residual vectors are orthogonal). Now from (${ }^{* *}$), we have $t_{k}=\left(r^{(k-1)}, r^{(k-1)}\right) /\left(v^{(k)}, v^{(k)}\right)_{A}$ and hence

$$
\left(r^{(k)}, r^{(k)}\right)=-\frac{\left(r^{(k-1)}, r^{(k-1)}\right)}{\left(v^{(k)}, v^{(k)}\right)_{A}}\left(r^{(k)}, v^{(k)}\right)_{A}
$$

From (*)

$$
s_{k}=-\frac{\left(v^{(k)}, r^{(k)}\right)_{A}}{\left(v^{(k)}, v^{(k)}\right)_{A}}=\frac{\left(r^{(k)}, r^{(k)}\right)}{\left(r^{(k-1)}, r^{(k-1)}\right)}
$$

In summary, the algorithm is as follows

Algorithm

Choose an initial $x^{(0)}$ and compute $r^{(0)}=b-A x^{(0)}$ and $v^{(1)}=r^{(0)}$.
For $k=1,2,3, \cdots$ until given accuracy achieved

$$
\begin{aligned}
t_{k} & =\left(r^{(k-1)}, r^{(k-1)}\right) /\left(v^{(k)}, A v^{(k)}\right) \\
x^{(k)} & =x^{(k-1)}+t_{k} v^{(k)} \\
r^{(k)} & =r^{(k-1)}-t_{k} A v^{(k)} \\
s_{k} & =\frac{\left(r^{(k)}, r^{(k)}\right)}{\left(r^{(k-1)}, r^{(k-1)}\right)} \\
v^{(k+1)} & =r^{(k)}+s_{k} v^{(k)}
\end{aligned}
$$

Note that we have one matrix-vector multiplication $A v^{(k)}$, three inner products $\left(r^{(k-1)}, r^{(k-1)}\right),\left(v^{(k)}, A v^{(k)}\right)$, $\left(r^{(k)}, r^{(k)}\right)$ and three scalar vector multiplications in the computation of $x^{(k)}, r^{(k)}, v^{(k+1)}$.

Remark:

If the matrix A is not well-conditioned, then we usually use pre-conditioned conjugate gradient method.

