
Conjugate Gradient Method

This note is mainly based on ‘Numerical Analysis’ by Burden and Faires.

It was first developed as direct method to solve a system of linear equations Ax = b but was

found to be inferior to Gauss elimination. However, it can can be used as an iterative method

for a sparse system with predictable pattern.

Here the matrix A is assumed to be symmetric and positive definite. For two n-vectors u

and v, we define the standard inner product (u, v) = utv =
∑n

i=1 uivi. For a positive definite

matrix A, we define A-inner product of two vectors u and v by (u, v)A = (u,Av) = utAv =

(Au)tv = (Au, v). As with inner product, there is an associated norm ||u||A =
√

(u,Au).

Theorem: The vector x∗ is a solution to the symmetric positive definite linear system Ax = b

if and only if x∗ minimizes the value of f(x) = 1
2
(x, x)A − (x, b).

Proof: For u and any v 6= 0, consider

f(u+ tv) =
1

2
(u+ tv, u+ tv)A − (u+ tv, b) = f(u) + t((u, v)A − (v, b)) +

t2

2
(v, v)A

The above can be written as f(u+ tv) ≡ h(t) = α+βt+ 1
2
γt2 with γ > 0. Hence it’s minimum

occurs at t = t̂ given by t̂ = −β/γ and h(t̂) = α − β2/2γ. Hence h(t̂) ≤ α and h(t̂) = α

only when β = 0. Note that (u, v)A − (v, b) = (Au − b, v) =⇒ t̂ = (b − Au, v)/(v, Av) and

f(u+ t̂v) ≤ f(u) for all v 6= 0 unless (b− Au, v) = 0 for which f(u+ t̂v) = f(u).

Let x∗ satisfies Ax = b and then (b−Ax∗, v) = 0 for any vector v. Now f(x∗+tv) ≥ f(x∗+

t̂v) for any t since minimum attained at t̂. But f(x+ t̂v) = f(x∗) and hence f(x∗+tv) ≥ f(x∗).

Now x = x∗ + tv is an arbitrary vector and hence f(x) ≥ f(x∗). Consequently f(x) cannot be

made smaller than f(x∗) and thus x∗ minimizes f(x).

Conversely, let x∗ minimizes f(x). Then f(x∗) ≤ f(x∗ + t̂v) for any nonzero vector v. But

f(x∗+ t̂v) ≤ f(x∗) which implies that f(x∗) = f(x∗+ t̂v) =⇒ (b−Ax∗, v) = 0 for any nonzero

vector v. If b− Ax∗ 6= 0, we take v = b− Ax∗, which gives ||b− Ax∗||2 = 0 =⇒ Ax∗ = b.

The above theorem shows the way to proceed. We choose an x(0) which is an initial

approximation to x∗. If b − Ax(0) 6= 0, we chose a nonzero v(1) (search direction) and t1 =

(b−Ax(0), v(1))/(v(1), v(1))A so that x(1) = x(0)+ t1v
(1) is a better approximation. This suggests

the following algorithm:

Algorithm

Choose an initial x(0) and v(1) 6= 0.

For k = 1, 2, 3, · · · ,
Calculate tk = (b− Ax(k−1), v(k))/(v(k), v(k))A = (r(k−1), v(k))/(v(k), v(k))A

x(k) = x(k−1) + tkv
(k).

Search the new direction v(k+1).

Finding search directions:

Note that f(x) = 1
2
(x, x)A − (x, b) and solution x∗ of Ax = b minimizes f(x). Note that ∇f

is the direction of fastest increase of f at a point and hence −∇f = b − Ax = r where r is

the residual vector gives the direction of fastest decrease. Hence one way to choose search

direction is by v(k+1) = r(k) = b − Ax(k). Choosing this way is called method of steepest

descent which is quite slow for linear system.

An alternative approach is to choose a set of nonzero direction vectors (called conju-

gate directions) v(1), v(2), · · · , v(n) which satisfy (v(i), v(j))A = 0 for i 6= j. This is called

A-orthogonality conditions.

Theorem: With the choice of conjugate directions v(1), v(2), · · · , v(n), it can be proved that

Ax(n) = b. (Here x(n) is obtained using algorithm given in first page)

Remark: This theorem implies that if exact arithmetic is used with conjugate directions,

then the algorithm converges in n-steps. In that sense, it is comparable to direct methods.

However, the number of iterations becomes large when n is large. Hence, we terminate the

iteration when suitable accuracy is achieved.

Theorem: It can be proved that the residual vectors r(k) = b − Ax(k) for k = 1, 2, · · · , n of

the conjugate direction method satisfy (r(k), v(j)) = 0 for j = 1, 2, · · · , k.

Conjugate gradient method:

The conjugate gradient method of Hestenes and Stiefel chooses the search directions v(k) dur-

ing the iterative process so that the residual vectors r(k) are mutually orthogonal. To construct

the direction vectors v(1), v(2), · · · , v(n) and the approximations x(1), x(2), · · · , x(n), we proceed

as follows.

We start with an initial approximation x(0) and if x(0) is not a solution, then we use the steep-

est descent direction r(0) = b− Ax(0) as v(1).

Assume that conjugate directions v(1), v(2), · · · , v(k) and approximate solutions x(1), x(2), · · · , x(k)

have already been computed, where

x(k) = x(k−1) + tkv
(k) and (v(i), v(j))A = 0, (r(i), r(j)) = 0 for i 6= j.

If x(k) is the solution of Ax = b, then nothing to do. Otherwise,

r(k) = b− Ax(k) 6= 0 and (r(k), v(j)) = 0 for j = 1, 2, · · · , k.

We generate v(k+1) from r(k) by setting v(k+1) = r(k) + skv
(k) and choose sk so that

(v(k), v(k+1))A = 0 =⇒ sk = −(v(k), r(k))A/(v
(k), v(k))A.· · · · · · (*)

It can be also shown that (v(j), v(k+1))A = 0 for j = 1, 2, · · · , k and hence v(1), v(2), · · · , v(k+1)

is an A-orthogonal set. Having chosen v(k+1), we compute

tk+1 = (v(k+1), r(k))/(v(k+1), v(k+1))A = (r(k), r(k))/(v(k+1), v(k+1))A+sk(v(k), r(k))/(v(k+1), v(k+1))A.

Since (v(k), r(k)) = 0 (by the theorem stated above), we have

tk+1 = (r(k), r(k))/(v(k+1), v(k+1))A.· · · · · · (**)

Thus x(k+1) = x(k) + tk+1v
(k+1) is obtained.

To compute r(k) = b− Ax(k), we have

r(k) = b− Ax(k) = b− A{x(k−1) + tkAv
(k)} =⇒ r(k) = r(k−1) − tkAv(k). This gives

(r(k), r(k)) = (r(k−1), r(k))− tk(Av(k), r(k)) = −tk(r(k), Av(k)) (since residual vectors are orthog-

onal). Now from (**), we have tk = (r(k−1), r(k−1))/(v(k), v(k))A and hence

(r(k), r(k)) = −(r(k−1), r(k−1))

(v(k), v(k))A
(r(k), v(k))A

From (*)

sk = − (v(k), r(k))A
(v(k), v(k))A

=
(r(k), r(k))

(r(k−1), r(k−1))

In summary, the algorithm is as follows

Algorithm

Choose an initial x(0) and compute r(0) = b− Ax(0) and v(1) = r(0).

For k = 1, 2, 3, · · · until given accuracy achieved

tk = (r(k−1), r(k−1))/(v(k), Av(k))

x(k) = x(k−1) + tkv
(k)

r(k) = r(k−1) − tkAv(k)

sk =
(r(k), r(k))

(r(k−1), r(k−1))

v(k+1) = r(k) + skv
(k)

Note that we have one matrix-vector multiplicationAv(k), three inner products (r(k−1), r(k−1)),(v(k), Av(k)),

(r(k), r(k)) and three scalar vector multiplications in the computation of x(k), r(k), v(k+1).

Remark:

If the matrix A is not well-conditioned, then we usually use pre-conditioned conjugate gradient

method.

