Assignment II

1. Verify that $p(x)=x^{2}-1$ and $q(x)=x^{3}+3 x^{2}-x-3$ interpolate the data $(-2,3),(-1,0),(1,0)$. Explain why this does not violate the uniqueness part of the theorem on existence of polynomial interpolation.
2. Express the polynomial $p(x)=3-(x-1)(4-(x+1)(5-x(6-(x+2))))$ in Newton's form with centres $2,2,1,-1$ and hence find its derivative at $x=2$. Also, find its second derivative at $x=2$.
3. Given that $\omega_{n+1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$. Show that

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\sum_{k=0}^{n} \frac{f\left(x_{k}\right)}{\omega_{n+1}^{\prime}\left(x_{k}\right)} .
$$

4. Given that $\omega_{n+1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$, where $x_{i}=x_{0}+i h, i=0,1,2, \cdots, n$ and $h=\left(x_{n}-x_{0}\right) / n$. If $x \in\left[x_{0}, x_{n}\right]$, then show that $\left|\omega_{n+1}(x)\right| \leq \frac{1}{4} h^{n+1} n$!. You may use that fact that $(n-j)!(j+1)!\leq n!$ for $0 \leq j \leq n-1$.
5. If $p(x)=x^{4}+x^{3}+x^{2}+x+1$ is written as
$p(x)=c_{0}+c_{1} x+c_{2} x(x+1)+c_{3} x(x+1)(x-1)+c_{4} x(x+1)(x-1)(x-2)$,
then find the value of $c_{0}+c_{1}+c_{2}+c_{3}+c_{4}$
6. The Lagrange interpolation polynomial $p_{n}(x)$ for $f(x)$ at x_{i}, for $i=0,1, \cdots, n$ is given by $p_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)$. Prove that L_{i} 's satisfy $\sum_{i=0}^{n} L_{i}(x)=1$.
7. If $\left(y_{0}, y_{1}, \cdots, y_{n}\right)$ is a permutation of $\left(x_{0}, x_{1}, \cdots, x_{n}\right)$, then show that $f\left[y_{0}, y_{1}, \cdots, y_{n}\right]=$ $f\left[x_{0}, x_{1}, \cdots, x_{n}\right]$.
8. Let $g(x)=f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right]$. Prove that

$$
g\left[y_{0}, y_{1}, \cdots, y_{m}\right]=f\left[x_{0}, x_{1}, \cdots, x_{n}, y_{0}, y_{1}, \cdots, y_{m}\right]
$$

9. It can be proved that $f\left[x_{0}, x_{1}, \cdots, x_{k}\right]$ is a continuous function of its arguments. If $g(x)=$ $f\left[x_{0}, x_{1}, \cdots, x_{m}, x\right]$, then prove that

$$
g^{(n)}(x)=n!f\left[x_{0}, x_{1}, x_{2}, \cdots, x_{m}, x, \cdots, x\right],
$$

where the argument x is repeated $n+1$ times.
10. Complete the following divided difference table and use them to find the polynomial of degree ≤ 3 that interpolates the function values given.

x	$\mathrm{f}]$	$\mathrm{f}[]$,	$\mathrm{f}[,]$,	$\mathrm{f}[,,]$,
-1	2			
1	f_{1}		2	
x_{2}	6			
		2		
5	10			

11. A polynomial $p(x)=x^{3}-x+2$ has the following values:

x	-1	0	1	2	3
$\mathrm{p}(\mathrm{x})$	2	2	2	8	26

Find the polynomial $q(x)$ which interpolates the following data

x	-1	0	1	2	3
$\mathrm{q}(\mathrm{x})$	2	2	2	8	-46

12. Given that $f(1)=1, f(2)=3$, and $f(4)=3$, use Lagrange's interpolation formula to estimate the value of $f(3)$.
13. Use Newton's divided difference formula to show that it is quite invalid to interpolate $\sqrt[3]{20}$ from the points $(0,0),(1,1),(8,2),(27,3),(64,4)$ of $f(x)=\sqrt[3]{x}$
14. Given that $e^{0}=1, e^{0.5}=1.64872$, and $e^{1}=2.71828$, use Newton's divided difference formula to estimate the value of $e^{0.25}$. Find lower and upper bounds on the magnitude of the error and verify that the actual magnitude is within the calculated bounds.
15. Construct the Lagrange interpolation polynomial p_{1} of degree 1 , for a continuous function f defined on the interval $[-1,1]$, using the interpolation points $x_{0}=-1, x_{0}=1$. Show further that if the second derivative of f exists and is continuous on $[0,1]$, then

$$
\left|f(x)-p_{1}(x)\right| \leq \frac{M_{2}}{2}\left(1-x^{2}\right) \leq \frac{M_{2}}{2}, \quad x \in[-1,1]
$$

where $M_{2}=\max _{x \in[-1,1]}\left|f^{\prime \prime}(x)\right|$. Give an example of a function f, and a point x, for which equality is achieved.
16. The interpolation error for a sufficient smooth function $f(x)$ is given by

$$
f(x)-p_{n}(x)=\frac{f^{n+1}(\xi)}{(n+1)!} \omega_{n+1}(x), \quad \xi \in(a, b)
$$

(a) Write down the Lagrange interpolation polynomial of degree 1 for the function $f(x)=$ x^{3}, using the points $x_{0}=0, x_{1}=a$. By direct calculation, verify the above error formula and show that ξ is unique and has the value $\xi=(x+a) / 3$.
(b) Repeat the calculation for the function $f(x)=(2 x-a)^{4}$; show that in this case there are two possible values for ξ, and give their values.
17. Consider a table of natural logarithm values, for the interval $[1 / 2,1]$. How many entries do we have to have in the table for linear interpolation between entries to be accurate to within 10^{-3} ?
18. The function defined by

$$
f(x)=\int_{0}^{x} \sin s^{2} d s
$$

has been tabulated for equally spaced values of x with step $h=0.1$. What is the maximum error encountered if cubic interpolation is to be used to calculate $f(\bar{x})$ for \bar{x} at any points on the interval $[0, \pi / 2]$?
19. Consider $n+1$ interpolation points $x_{0}, x_{1}, \cdots, x_{n}$. An interpolating spline of degree n is required to have continuous derivatives up to and including $n-1$ at the knots. How many additional conditions are required to specify the spline uniquely.
20. For what values of k is the following a spline function?

$$
q(x)=\left\{\begin{array}{cr}
x^{3}-x^{2}+k x+1, & 0 \leq x \leq 1 \\
-x^{3}+(k+2) x^{2}-k x+3, & 1 \leq x \leq 2
\end{array}\right.
$$

21. Is the following function $q(x)$ a natural cubic spline on the interval $-1 \leq x \leq 2$?

$$
q(x)=\left\{\begin{array}{c}
2(x+1)+(x+1)^{3}, \quad x \in[-1,0] \\
3+5 x+3 x^{2}, \quad x \in[0,1] \\
11+11(x-1)+3(x-1)^{2}-(x-1)^{3}, \quad x \in[1,2]
\end{array}\right.
$$

22. Determine whether the following is a spline function:

$$
q(x)=\left\{\begin{array}{cl}
x, & x \in[-3,1] \\
-\frac{1}{2}(2-x)^{2}+3 / 2, \quad x \in[1,2] \\
\frac{3}{2}, & x \in[2,5]
\end{array}\right.
$$

23. Determine a, b, c so that the following function

$$
q(x)=\left\{\begin{array}{c}
x^{3}, \quad x \in[0,1] \\
-\frac{1}{2}(x-1)^{3}+a(x-1)^{2}+b(x-1)+c, \quad x \in[1,3]
\end{array}\right.
$$

is a cubic spline. Is it a natural cubic spline?
24. Find the natural cubic spline that interpolates the data $(1,1),(2,1)$ and $(3,0)$.
25. Give an example of a cubic spline with knots $0,1,2$, and 3 that is linear in $[0,1]$, cubic in $[1,2]$, and quadratic in $[2,3]$.
26. Determine a, b, c, d so that the following function

$$
q(x)=\left\{\begin{array}{c}
x^{3}+1, \quad x \in[-5,0] \\
a x^{3}+b x^{2}+c x+d, \quad x \in[0,5]
\end{array}\right.
$$

is a cubic spline which assumes the value 5 at $x=1$.

