Assignment-III

1. Prove that when the matrix A is nonsingular, then

$$
\frac{1}{\left\|A^{-1}\right\|}=\min _{\|x\|=1}\|A x\|
$$

2. Prove that if $\|A\|<1$ then $I-A$ is invertible and

$$
(I-A)^{-1}=I+A(I-A)^{-1}
$$

Hence deduce that

$$
\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}
$$

Also show that if A is invertible and $\|A-B\|<1 /\left\|A^{-1}\right\|$, then B is also invertible.
3. Show that for any matrix $A_{m \times n}$,

$$
\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2} \quad \text { and } \quad\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}
$$

4. Suppose that $A_{n \times n}$ is a nonsingular matrix and $b \in R_{*}^{n}=R^{n} \backslash\{0\}$. Given that $A x=b$ and $(A+\delta A)(x+\delta x)=b+\delta b$, and that $\left\|A^{-1}\right\|\|\delta A\|<1$. Show that

$$
\frac{\|\delta x\|}{\|x\|} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|}}\left(\frac{\|\delta b\|}{\|b\|}+\frac{\|\delta A\|}{\|A\|}\right)
$$

5. Consider the following tridiagonal matrix

$$
A=\left(\begin{array}{ccccc}
b_{1} & c_{1} & \cdots & \cdots & \cdots \\
a_{2} & b_{2} & c_{2} & \cdots & \cdots \\
\cdots & a_{3} & b_{3} & c_{3} & \cdots \\
\vdots & & & & \\
\cdots & \cdots & \cdots & a_{n} & b_{n}
\end{array}\right)
$$

with $\left|b_{1}\right|>\left|c_{1}\right|,\left|b_{n}\right| \geq\left|a_{n}\right|$ and $\left|b_{j}\right| \geq\left|a_{j}\right|+\left|c_{j}\right|, j=2,3, \cdots, n-1$. If $a_{j} \neq 0$ for $j=2,3, \cdots, n$, then show that every principal submatrix (and hence A) is nonsingular.
6. Calculate the number of multiplications and divisions required to solve $A x=b$ by LU factorization where A is the tridiagonal matrix given above.
7. A matrix A is (strictly) diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \cdots, n
$$

(i) Show that Gauss elimination without partial pivoting preserve the diagonal dominance of a matrix.
(ii) Show that if Gauss elimination is carried out with scaled partial pivoting on a diagonally dominant matrix, then row interchange is not necessary.
(Thus, if a matrix is diagonally dominant then it has LU factorization.)
8. A 3×3 matrix A has LU decomposition $A=L U$ where

$$
U=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -9 & -15 \\
0 & 0 & -6
\end{array}\right]
$$

If $L y=b$ where $b=[1,2,-1]^{T}$ has the solution $y=[1,-5,-5]^{T}$, the find the solution to $A x=b$.
9. The spectral radius of a matrix A is denoted by $\rho(A)$ and is defined by

$$
\rho(A)=\max \{|\lambda|: \lambda \text { is an eigenvalue of } A\}
$$

It can be shown that $\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}$. The condition number of a matrix A is defined by $\kappa(A)=\|A\|\left\|A^{-1}\right\|$. There is a condition number for each norm; for example, if we use the $2-$ norm, then $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.
(a) Prove that for any nonsingular matrix A

$$
\kappa_{2}(A)=\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{1 / 2}
$$

where λ_{1} is the smallest and λ_{n} is the largest eigenvalue of the matrix $A^{T} A$
(b) Show that the condition number $\kappa_{2}(A)$ of an orthogonal matrix is equal to 1 .
(c) Show that if λ is an eigenvalue of $A^{T} A$, then

$$
0 \leq \lambda \leq\left\|A^{T}\right\|\|A\|
$$

provided that the same norm is used for both A and A^{T}. Hence show that, for any nonsingular matrix A

$$
\kappa_{2}(A) \leq\left[\kappa_{1}(A) \kappa_{\infty}(A)\right]^{1 / 2}
$$

10. Prove that if A is diagonally dominant, then both the Jacobi and Gauss-Seidel method converges.
11. For solving $A x=b$ we use $x^{(k+1)}=G x^{(k)}+c$ where G is the iteration matrix. Consider the matrix

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

Find the iteration matrix and its spectral radius for the Jacobi and Gauss-Seidel schemes. Also, find the iteration matrix for the SOR scheme
12. Find the iteration matrix for both the Jacobi and Gauss-Seidel method in solving $A x=b$, where the tridiagonal matrix A is given in Q. 5 with $a_{i}=c_{i}=-1$ and $b_{i}=2$ for all i.
13. Show that for the SOR method to converge, the relaxation parameter ω must satisfy $0<\omega<2$.
14. Consider the linear system $A x=b$ where

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right), \quad b=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

Show that A is positive definite. Starting with $x^{(0)}=(0,0,0)^{T}$, show that CG method converges in 3 steps.

