Hermite Interpolation

Hermite interpolation interpolates function values and function derivatives at the interpolation points. Let the interpolation points be $x_{i}, i=0,1,2, \cdots, n$. Let the Hermite interpolation polynomial be

$$
\begin{equation*}
p_{2 n+1}(x)=\sum_{i=0}^{n}\left(H_{i}(x) f\left(x_{i}\right)+K_{i}(x) f^{\prime}\left(x_{i}\right)\right), \tag{1}
\end{equation*}
$$

where both $H_{i}(x)$ and $K_{i}(x)$ are polynomial of degree $2 n+1$. Further, to satisfy the interpolation conditions, we need

$$
H_{i}\left(x_{j}\right)=\delta_{i j}, \quad H_{i}^{\prime}\left(x_{j}\right)=0
$$

and

$$
K_{i}\left(x_{j}\right)=0, \quad K_{i}^{\prime}\left(x_{j}\right)=\delta_{i j} .
$$

Now

$$
l_{i}(x)=\frac{\omega_{n+1}(x)}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)}
$$

is a polynomial of degree n and $l_{i}\left(x_{j}\right)=\delta_{i j}$. Let us choose $H_{i}(x)=r_{i}(x) l_{i}^{2}(x)$ and $K_{i}(x)=$ $s_{i}(x) l_{i}^{2}(x)$. Then to satisfy the conditions, we need to impose

$$
r_{i}\left(x_{i}\right)=1, \quad r_{i}^{\prime}\left(x_{i}\right)+2 l_{i}^{\prime}\left(x_{i}\right)=0,
$$

and

$$
s_{i}\left(x_{i}\right)=0, \quad s_{i}^{\prime}\left(x_{i}\right)=1
$$

Hence, $r_{i}(x)=1-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)$ and $s_{i}(x)=x-x_{i}$. Hence,

$$
H_{i}(x)=\left(1-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right) l_{i}^{2}(x), \quad K_{i}(x)=\left(x-x_{i}\right) l_{i}^{2}(x)
$$

To prove that this polynomial is the unique polynomial of degree less than or equal to $2 n+1$, let there exists another polynomial $q_{2 n+1}(x)$. Then $d(x)=p_{2 n+1}(x)-q_{2 n+1}(x)$ is a polynomial of degree less than or equal to $2 n+1$. Since $d\left(x_{i}\right)=0$ for $i=0,1,2, \cdots, n$, it follows from Rolle's theorem that $d^{\prime}(x)$ has n zeros that lie in the intervals $\left(x_{i-1}, x_{i}\right)$ for $i=1,2, \cdots, n$. Further, since $d^{\prime}\left(x_{i}\right)=0$, it is clear that $d^{\prime}(x)$ has additional $n+1$ zeros. Hence, $d^{\prime}(x)$ has $2 n+1$ distinct zeros. But $d^{\prime}(x)$ is a polynomial of degree less than or equal to $2 n$. Hence $d(x) \equiv 0$.

To find the error formula, let \bar{x} be a point different from x_{i} 's and let

$$
f(\bar{x})-p_{2 n+1}(\bar{x})=c(\bar{x}) \omega_{n+1}^{2}(\bar{x}) .
$$

Now consider the function

$$
\phi(t)=f(t)-p_{2 n+1}(t)-c(\bar{x}) \omega_{n+1}^{2}(t)
$$

Then $\phi\left(x_{i}\right)=0$ for $i=0,1,2, \cdots, n$ and $\phi(\bar{x})=0$. Let $a=\min _{0 \leq i \leq n}\left\{\bar{x}, x_{i}\right\}$ and $b=$ $\max _{0 \leq i \leq n}\left\{\bar{x}, x_{i}\right\}$. Now by Roll's theorem, $\phi^{\prime}(t)$ vanishes $(n+1)$ times in the interior of the intervals formed by x_{i} 's and \bar{x}. Further $\phi^{\prime}(t)$ vanishes at the $(n+1)$ points x_{i}. Clearly, $\phi^{\prime}(t)$ has $(2 n+2)$ distinct zeros in $[a, b]$. By Rolle's theorem $\phi^{(2 n+2)}(\xi)=$ for $\xi \in(a, b)$. This implies

$$
f^{(2 n+2)}(\xi)-c(\bar{x})(2 n+2)!=0
$$

Hence

$$
f(\bar{x})-p_{2 n+1}(\bar{x})=\frac{f^{(2 n+2)}(\xi)}{(2 n+2)!} \omega_{n+1}^{2}(\bar{x})
$$

