Lab Assignment I

1. This example illustartes loss of significance due to cancellation. Write a program which calculates the real roots of the quadratic equation $x^{2}-0.4 x-0.8 \epsilon_{k}=0$ where $\epsilon_{k}=10^{-k}$. The real roots of the equation $a x^{2}+b x+c=0$ are given by

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad\left(\text { assuming } \quad b^{2} \geq 4 a c\right)
$$

Here x_{1} represents the root with larger magnitude. For example, if $b<0$, then $x_{1}=$ $\left(-b+\sqrt{b^{2}-4 a c}\right) / 2 a$. Note that x_{2} can be alternatively computed as $x_{2 a}=c / a x_{1}$. Write a C program cands.c that calculates $x_{1}, x_{2}, x_{2 a}$ using single precision (float) for real variables and prints in a table as shown below. The program also prints the size of float for the machine. The roots are printed using exponetial format with 6 -place after decimal. Output of your program should appear in places marked (---).

```
Size of float --- bytes
```

k	x 1	x 2	x 2 a
1	$3.788854 \mathrm{e}-01$	$2.111456 \mathrm{e}-02$	$2.111456 \mathrm{e}-02$
2	---	---	---
3	---	---	---
4	---	---	---
5	---	---	---
6	---	---	---

Copy the same program to file candd.c and use double instead of float. Produced a similar output as above. Observe the difference in output for the two programs.
2. This example illustartes the opposite effects of truncation error and rounding error. Note that derivative of a function $f(x)$ at x is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We approximate $f^{\prime}(x)$ by taking small value of h. Write a program deriv.c that calculates the derivative of $f(x)=\sin x$ at $x=1$. The exact answer is $f^{\prime}(1)=\cos (1)$ and we can calculate the absolute error from $\left|f^{\prime}(1)-f_{h}^{\prime}(1)\right|$, where $f_{h}^{\prime}(1)$ is the approximate $f^{\prime}(1)$ with a given h. The program prints the output in a tabular format as shown below where $h=1 / 10^{k}(k=1,2, \cdots, 18)$. Output of your program should appear in places marked (---). Print the real variables in exponetial format using 6 decimal places. Use double for real variables. One output is shown.
k
h
1 1.000000e-01
fh' (1)
$4.973638 \mathrm{e}-01$
f' (1)
$5.403023 \mathrm{e}-01$
Abs. error
4.293855e-02

