## Lab Assignment II

1. We examine the behaviour of error as the degree of interpolating polynomial increases for equispaced interpolation points. We construct a polynomial of degree $\leq n$ on $[-1,1]$ in Lagrange's form using $n+1$ equispaced points for the Runge function $f(x)=1 /\left(1+25 x^{2}\right)$. The interpolating data are $\left(x_{i}, y_{i}\right)$ where $x_{i}=2 i / n-1$ and $y_{i}=f\left(x_{i}\right)(i=0,1, \cdots, n)$. Next calculate the error $\left\|f-p_{n}\right\|_{\infty}=\max _{x \in[-1,1]}\left|f(x)-p_{n}(x)\right|$. To implement this, we take large number of points in $[-1,1]$. If we take $m=1001$ points, then $z_{i}=2 i / m-1$ and we approximate the above norm by $\left\|f-p_{n}\right\|_{\infty}=\max _{0 \leq i \leq m}\left|f\left(z_{i}\right)-p_{n}\left(z_{i}\right)\right|$. Note that in case $z_{i}$ concides with any $x_{j}$, then $\left|f\left(z_{i}\right)-p_{n}\left(z_{i}\right)\right|=0$. We also find $z_{i}$ at which this maximum occurs. Due to symmetry, it occurs at left as well as right ends.
Finally we output the data corresponding to $z_{i}(i=0,1, \cdots, m)$ in a file (say prunge.dat). This data file has three columns with first, second and third columns containing $z_{i}, f\left(x_{i}\right)$ and $p_{n}\left(z_{i}\right)$. Using gnuplot, you can plot them using the following command
```
plot 'prunge.dat' u 1:2 w l ls 2 title "f(x)",'prunge.dat' u 1:3 w l ls 3 title "p_{10}(x)"
```

for $n=10$. (Here ' $u$ ' stands for 'using', ' $1: 2$ ' stands for 'columns 1 and 2 ', ' 1 ' for 'lines' and 'ls' for 'linestyle'. Syntax for your desktop may be different.)

Your program should handle upto interpolating polynomial of degree 50. Here is a typical input/output

Enter degree n of interpolating polynomial: 9
||f-P_9|| $=0.3003$ occurs at $x=0.9280$

Also, a screenshot of the gnuplot command is the following:


