Lab Assignment IV

LU decomposition is one of the efficient way to solve a system of linear equations $A x=b$ for many different choice of b. We express A as $A=L U$ where L and U are lower and upper triangular matrices respectively. Then $A x=b$ is equivalent to $L U x=b$ which can be solved by $L z=b$ followed by $U x=z$. Note that $L z=b / U x=z$ can be solved by forward/backward substitution. We shall apply this method to solve system of linear equations $A x=d$ where A is a tridiagonal matrix of the form

$$
A=\left[\begin{array}{cccccc}
b_{1} & c_{1} & & & & \\
a_{2} & b_{2} & c_{2} & & & \\
& a_{3} & b_{3} & c_{3} & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
& & & a_{n-1} & b_{n-1} & c_{n-1} \\
& & & & a_{n} & b_{n}
\end{array}\right]
$$

Note that we can define the tridiagonal matrix using three vectors a, b, c each of dimension n where $a_{1}=c_{n}=0$. We take L and U as

$$
L=\left[\begin{array}{cccccc}
1 & & & & & \\
\alpha_{2} & 1 & & & & \\
& \alpha_{3} & 1 & & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
& & & & 1 & \\
& & & & \alpha_{n} & 1
\end{array}\right] \quad U=\left[\begin{array}{cccccc}
\beta_{1} & c_{1} & & & & \\
& \beta_{2} & c_{2} & & & \\
& & \beta_{3} & c_{3} & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
& & & & \beta_{n-1} & c_{n-1} \\
& & & & & \beta_{n}
\end{array}\right]
$$

Clearly each of L and U can be stored using a one dimensional array. The unknowns α_{i} and β_{i} satisfy $\beta_{1}=b_{1}$ and $\alpha_{j} \beta_{j-1}=a_{j}, \beta_{j}+\alpha_{j} c_{j-1}=b_{j}$ for $j=2, \cdots, n$. Solution of $L z=d$ is obtained from $z_{1}=d_{1}$ and $\alpha_{j} z_{j-1}+z_{j}=d_{j}$ for $j=2, \cdots, n$. Finally $U x=z$ is solved as $x_{n}=z_{n} / \beta_{n}$ and $\beta_{j} x_{j}+c_{j} x_{j+1}=z_{j}$ for $j=n-1, n-2, \cdots, 1$. (Note that in C, the array index starts from 0). To check the accuracy, you may assign 1 to all a 's and c 's and 2 to all b 's. Further, assign 4 to all the d 's except $d_{1}=d_{n}=3$. Then all the x 's of the solution are 1 .

Implement the above algorithm for the system

$$
\left[\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
& & & & -2 & 1 \\
& & & & 1 & -2
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots \\
d_{n-1} \\
d_{n}
\end{array}\right]
$$

where $d_{i}=6 i h^{3}$ for $i=1, \cdots, n-1$ and $d_{n}=6 n h^{3}-2$ with $h=1 /(n+1)$.

Below is a typical input/output:
Enter n:9
i $x[i]$
10.101000
20.208000
30.327000
40.464000
50.625000
60.816000
$7 \quad 1.043000$
81.312000
91.629000

