Lab Assignment V

Given the interpolation points $(x_i, f_i), i = 0, 1, 2, \dots, n$ $(a = x_0 < x_1 < x_2 < \dots < x_n = b)$, a cubic spline is given by

$$S(x) = \left\{ S_i(x), x \in [x_i, x_{i+1}] \right\}, i = 0, 1, 2, \cdots, n-1,$$

where S_i is a polynomial of degree less equal to 3. Each S_i is given by

$$S_i(x) = A_i(x_{i+1} - x)^3 + B_i(x - x_i)^3 + C_i(x - x_i) + D_i(x_{i+1} - x), \qquad i = 0, 1, \cdots, n - 1,$$

where

$$A_{i} = \frac{z_{i}}{6h_{i}}, \quad B_{i} = \frac{z_{i+1}}{6h_{i}}, \quad C_{i} = \left(\frac{f_{i+1}}{h_{i}} - \frac{z_{i+1}h_{i}}{6}\right), \quad D_{i} = \left(\frac{f_{i}}{h_{i}} - \frac{z_{i}h_{i}}{6}\right),$$

where $h_i = x_{i+1} - x_i$, $i = 0, 1, 2, \dots, n-1$. For natural cubic spline $z_0 = z_n = 0$ and z_i , $i = 1, 2, \dots, n-1$ are the solution of tridiagonal system

$\int d_1$	h_1				-	z_1		r_1]
h_1	d_2	h_2				z_2		r_2	
	h_2	d_3	h_3			z_3	_	r_3	
		۰.	·	·		:	=	÷	:
			h_{n-3}	d_{n-2}	h_{n-2}	z_{n-2}		r_{n-2}	
L				h_{n-2}	d_{n-1}	z_{n-1}		r_{n-1}	

where $d_i = 2(h_i + h_{i-1})$, $r_i = 6(b_i - b_{i-1})$ and $b_i = (f_{i+1} - f_i)/h_i$. This can be solved by LU decomposition.

Your program should read n, a, b from the keyboard. Then n + 1 interpolation data (x_i, f_i) for $i = 0, 1, 2, \dots, n$ are generated from $x_i = a + (b - a)i/n$ and $f_i = f(x_i)$. The following data are for a = 0, b = 2, n = 5 and $f(x) = e^x$.

Below is a typical input/output:

Enter n:5

- Enter x_0 and $x_n: 0 2$
- z[0] 0.000000
- z[1] 1.701545
- z[2] 2.264751
- z[3] 2.771691
- z[4] 6.836216
- z[5] 0.000000

To find the interpolation value corresponding to any $x \in [a, b]$, find *i* such that $x \in [x_i, x_{i+1}]$. Then we find the value from the corresponding $S_i(x)$. Now we take m + 1 points with m = 1000, then $t_i = a + (b - a)i/m$ ($i = 0, 1, \dots, m$). We print the data corresponding to t_i ($i = 0, 1, \dots, m$) in a file (say exp.dat) which have three columns with first, second and third columns containing t_i , $S(t_i)$ and $f(t_i)$. Using gnuplot, you can plot them using the following command (the command may be different for gnuplot installed in your desktop.) A screenshot is attached.

plot 'exp.dat' u 1:2 w l ls 1, 'exp.dat' u 1:3 w l ls 2

