Given the interpolation points $\left(x_{i}, f_{i}\right), i=0,1,2, \cdots, n\left(a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right)$, a cubic spline is given by

$$
S(x)=\left\{S_{i}(x), x \in\left[x_{i}, x_{i+1}\right]\right\}, i=0,1,2, \cdots, n-1,
$$

where S_{i} is a polynomial of degree less equal to 3 . Each S_{i} is given by

$$
S_{i}(x)=A_{i}\left(x_{i+1}-x\right)^{3}+B_{i}\left(x-x_{i}\right)^{3}+C_{i}\left(x-x_{i}\right)+D_{i}\left(x_{i+1}-x\right), \quad i=0,1, \cdots, n-1,
$$

where

$$
A_{i}=\frac{z_{i}}{6 h_{i}}, \quad B_{i}=\frac{z_{i+1}}{6 h_{i}}, \quad C_{i}=\left(\frac{f_{i+1}}{h_{i}}-\frac{z_{i+1} h_{i}}{6}\right), \quad D_{i}=\left(\frac{f_{i}}{h_{i}}-\frac{z_{i} h_{i}}{6}\right),
$$

where $h_{i}=x_{i+1}-x_{i}, i=0,1,2, \cdots, n-1$. For natural cubic spline $z_{0}=z_{n}=0$ and $z_{i}, i=$ $1,2, \cdots, n-1$ are the solution of tridiagonal system

$$
\left[\begin{array}{cccccc}
d_{1} & h_{1} & & & & \\
h_{1} & d_{2} & h_{2} & & & \\
& h_{2} & d_{3} & h_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & h_{n-3} & d_{n-2} & h_{n-2} \\
& & & & h_{n-2} & d_{n-1}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
\vdots \\
z_{n-2} \\
z_{n-1}
\end{array}\right]=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3} \\
\vdots \\
r_{n-2} \\
r_{n-1}
\end{array}\right]
$$

where $d_{i}=2\left(h_{i}+h_{i-1}\right), r_{i}=6\left(b_{i}-b_{i-1}\right)$ and $b_{i}=\left(f_{i+1}-f_{i}\right) / h_{i}$. This can be solved by LU decomposition.

Your program should read n, a, b from the keyboard. Then $n+1$ interpolation data (x_{i}, f_{i}) for $i=0,1,2, \cdots, n$ are generated from $x_{i}=a+(b-a) i / n$ and $f_{i}=f\left(x_{i}\right)$. The following data are for $a=0, b=2, n=5$ and $f(x)=e^{x}$.

Below is a typical input/output:

```
Enter n:5
Enter x_0 and x_n: 0 2
z[0] 0.000000
z[1] 1.701545
z[2] 2.264751
z[3] 2.771691
z[4] 6.836216
z[5] 0.000000
```

To find the interpolation value corresponding to any $x \in[a, b]$, find i such that $x \in\left[x_{i}, x_{i+1}\right]$. Then we find the value from the corresponding $S_{i}(x)$. Now we take $m+1$ points with $m=$ 1000, then $t_{i}=a+(b-a) i / m(i=0,1, \cdots, m)$. We print the data corresponding to t_{i} $(i=0,1, \cdots, m)$ in a file (say exp.dat) which have three columns with first, second and third columns containing $t_{i}, S\left(t_{i}\right)$ and $f\left(t_{i}\right)$. Using gnuplot, you can plot them using the following command (the command may be different for gnuplot installed in your desktop.) A screenshot is attached.

```
plot 'exp.dat' u 1:2 w l ls 1,'exp.dat' u 1:3 w l ls 2
```


