Lab Assignment VI

Consider the boundary value problem (BVP)

$$\frac{d^2u}{dx^2} = f(x), \qquad u(0) = A, \ u(1) = B$$

Let x_i , $i = 0, 1, \dots, n+1$ be n+2 equispaced grid points with $x_i = ih$, where h = 1/(n+1). Denoting $u_i \approx u(x_i)$, the above system (upon discretization) can be reduced to

$$\begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & 1 & -2 & 1 & & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \\ & & & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix},$$

where $d_1 = h^2 f(x_1) - u(0)$, $d_i = h^2 f(x_i)$ for $i = 2, \dots, n-1$ and $d_n = h^2 f(x_n) - u(1)$.

Solve the above linear system using Gauss-Seidel iteration for f(x) = 6x, A = 0, B = 2 for which the exact solution is $u(x) = x + x^3$. Instead of using a full matrix, you may use three arrays to store the nonzero elements of the matrix and one array to store the right hand side. Iteration is stopped when $||u^{(k)} - u^{(k-1)}||_{\infty} < \epsilon$ where choose $\epsilon = 10^{-4}$. Initial components of $u^{(0)}$ are zero. You need two arrays in the algorithm to store the previous iteration values for the norm calculation. Your input/output should be in the following format where -- contains the output from your code.

Here n+2 is the total number of grid points

Enter n:9

No. of iterations : --

u[1] ___ u[2] ___ u[3] ---

u[4]

- u[5] ___
- u[6] ___
- u[7] ___
- u[8] ---
- u[9] ____