Lab Assignment VI

Consider the boundary value problem (BVP)

$$
\frac{d^{2} u}{d x^{2}}=f(x), \quad u(0)=A, u(1)=B
$$

Let $x_{i}, i=0,1, \cdots, n+1$ be $n+2$ equispaced grid points with $x_{i}=i h$, where $h=1 /(n+1)$. Denoting $u_{i} \approx u\left(x_{i}\right)$, the above system (upon discretization) can be reduced to

$$
\left[\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
& & & & -2 & 1 \\
& & & & 1 & -2
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots \\
d_{n-1} \\
d_{n}
\end{array}\right]
$$

where $d_{1}=h^{2} f\left(x_{1}\right)-u(0), d_{i}=h^{2} f\left(x_{i}\right)$ for $i=2, \cdots, n-1$ and $d_{n}=h^{2} f\left(x_{n}\right)-u(1)$.
Solve the above linear system using Gauss-Seidel iteration for $f(x)=6 x, A=0, B=2$ for which the exact solution is $u(x)=x+x^{3}$. Instead of using a full matrix, you may use three arrays to store the nonzero elements of the matrix and one array to store the right hand side. Iteration is stopped when $\left\|u^{(k)}-u^{(k-1)}\right\|_{\infty}<\epsilon$ where choose $\epsilon=10^{-4}$. Initial components of $u^{(0)}$ are zero. You need two arrays in the algorithm to store the previous iteration values for the norm calculation. Your input/output should be in the following format where --- contains the output from your code.

```
Here n+2 is the total number of grid points
```

Enter $\mathrm{n}: 9$
No. of iterations : --
u [1]
u[2] ---
u[3] ---
u[4] ---
u[5] ---
u[6] ---
u[7] ---
u[8] ---
u[9] ---

