Lab Assignment VI

Consider the boundary value problem (BVP)

$$\frac{d^2u}{dx^2} = f(x), \qquad u(0) = A, \ u(1) = B$$

Let x_i , $i = 0, 1, \dots, n+1$ be n+2 equispaced grid points with $x_i = ih$, where h = 1/(n+1). Denoting $u_i \approx u(x_i)$, the above system (upon discretization) can be reduced to

where $d_1 = h^2 f(x_1) - u(0)$, $d_i = h^2 f(x_i)$ for $i = 2, \dots, n-1$ and $d_n = h^2 f(x_n) - u(1)$.

Solve the above linear system using SOR method for f(x) = 6x, A = 0, B = 2 for which the exact solution is $u(x) = x + x^3$. Instead of using a full matrix, you may use three arrays to store the nonzero elements of the matrix and one array to store the right hand side. Iteration is stopped when $||u^{(k)} - u^{(k-1)}||_{\infty} < \epsilon$ where choose $\epsilon = 10^{-4}$. Initial components of $u^{(0)}$ are zero. You need two arrays in the algorithm to store the previous iteration values for the norm calculation. Your input/output should be in the following format where -- contains the output from your code.

Here n+2 is the total number of grid points

Enter n:9

Enter relaxation parameter w :1.5

```
No. of iterations : --
```

```
u[1] ---
```