
Spline Interpolation

We have seen that an increase in the number of interpolation points (i.e. increasing the degree

of the interpolating points) may not lead to better approximation for a function f(x). Let

a = x0 < x1 < x2 < · · · < xn = b are the interpolating points. A better approach may be to

partition the interval [a, b] into small subintervals and approximate f(x) in each subinterval

by piece of small degree polynomials. A function S(x) is called a spline of degree k if

1. The domain of S is [a, b]

2. S, S ′, S ′′, · · · , S(k−1) are all continuous in [a, b]

3. The points xi’s are called knots and S is a polynomial of degree less than or equal to k

in each subinterval [xi, xi+1] for i = 0, 1, 2, · · · , n− 1.

We discuss the more widely used spline of degree 3 which is also called cubic spline. Let

S(x) =
{

Si(x), x ∈ [xi, xi+1]
}

, i = 0, 1, 2, · · · , n− 1,

where Si is a polynomial of degree less equal to 3. We can write Si as

Si(x) = ai + bix+ cix
2 + dix

3.

Thus there are in total 4n unknown constants. The interpolation conditions are

S(xi) = fi, 0 ≤ i ≤ n

lim
x→xi−0

S(x) = lim
x→xi+0

S(x), 1 ≤ i ≤ n− 1

lim
x→xi−0

S ′(x) = lim
x→xi+0

S ′(x), 1 ≤ i ≤ n− 1

lim
x→xi−0

S ′′(x) = lim
x→xi+0

S ′′(x), 1 ≤ i ≤ n− 1.

Thus we have 4n− 2 conditions. Hence, we need to specify another 2 conditions and that can

be done in various ways. Since S ′′ is continuous, zi = S ′′(xi) for i = 0, 1, 2, · · · , n are defined

and S ′′ is a linear polynomial in each [xi, xi+1]. Thus

S ′′
i (x) =

xi+1 − x

hi
zi +

x− xi

hi
zi+1

Integrating this twice, we get

Si(x) =
(xi+1 − x)3

6hi
zi +

(x− xi)
3

6hi
zi+1 + rx+ s.

We adjust constant r and s such that

Si(x) =
(xi+1 − x)3

6hi

zi +
(x− xi)

3

6hi

zi+1 + C(x− xi) +D(xi+1 − x),

where C and D are again constants. The first two sets of interpolation conditions can be

taken care of by Si(xi) = fi and Si(xi+1) = fi+1. Hence, we find

Si(x) =
(xi+1 − x)3

6hi

zi +
(x− xi)

3

6hi

zi+1 +

(

fi+1

hi

−
zi+1hi

6

)

(x− xi) +

(

fi
hi

−
zihi

6

)

(xi+1 − x)



Hence, the only unknown values are zi’s. To find these, we use continuity condition of S ′(x)

at x1, x2, · · · , xn−1. These conditions are S ′
i(xi + 0) = S ′

i−1(xi − 0). This gives

hi−1zi−1 + 2(hi + hi−1)zi + hizi+1 = 6(bi − bi−1), i = 1, 2, · · · , n− 1,

where bi = (fi+1−fi)/hi. These are n−1 equations in n+1 unknowns. We can choose z0 and

zn (by some choice) and then solve the resulting tridiagonal system to find z1, z2, · · · , zn−1.

One choice is z0 = zn = 0 and the resulting spline is called natural cubic spline. The resulting

system is symmetric, tridiagonal and diagonally dominant:
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,

where di = 2(hi+hi−1), ri = 6(bi− bi−1). This can be solved by Gaussian elimination without

scaled pivoting.

Another choice of endpoint conditions are S ′(x0) = f ′(a) and S ′(xn) = f ′(b), which is also

known as clamped conditions. In this case S ′(x0) = f ′(a) gives

2h0z0 + h0z1 = 6(b0 − f ′(a))

and S ′(xn) = f ′(b) gives

hn−1zn−1 + 2hn−1zn = 6(f ′(b)− bn−1)

Thus the system can be writeen as n+ 1 equations in (n + 1) unknowns as
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,

where di = 2(hi + hi−1), ri = 6(bi − bi−1) for 1 ≤ i ≤ n − 1 and d0 = 2h0, dn = 2hn−1,

r0 = 6(b0 − f ′(a)) and rn = 6(f ′(b)− bn−1).

Alternatively, we may also eliminate z0 and zn and obtain n−1 equations in n−1 unknowns.

This gives the system
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where ei = di, si = ri (defined earlier) for 2 ≤ i ≤ n − 2 and e1 = 3h0/2 + 2h1, en−1 =

2hn−2 + 3hn−1/2, s1 = r1 − 3(b0 − f ′(a)) and sn−1 = rn−1 − 3(f ′(b)− bn−1)

Next we prove that a theorem on the optimality of natural cubic spline. Let f ′′ be contin-

uous in [a, b] and a = x0 < x1 < x2 < · · · < xn be the knots. If S is the natural cubic spline,

then
∫ b

a

(

S ′′(x)
)2

dx ≤

∫ b

a

(

f ′′(x)
)2

dx

This result is also true for spline with clamped conditions. To prove this, let g = f − S.

Clearly, g(xi) = 0 for i = 0, 1, 2, · · · , n. Then
∫ b

a

(

f ′′(x)
)2

dx =

∫ b

a

(

S ′′(x)
)2

dx+

∫ b

a

(

g′′(x)
)2

dx+ 2

∫ b

a

(

S ′′(x)g′′(x)
)

dx

We need to show that the last integral in the RHS is greater or equal to zero. Now, using

integration by parts, we find (Note that S ′′′ is a constant, ci say, in [xi−1, xi])

∫ b

a

(

S ′′(x)g′′(x)
)

dx =
n

∑

i=1

∫ xi

xi−1

S ′′g′′ dx

=

n
∑

i=1

{

(S ′′g′)|xi
− (S ′′g′)|xi−1

−

∫ xi

xi−1

S ′′′g′ dx
}

= (S ′′g′)|b − (S ′′g′)|a −
n

∑

i=1

∫ xi

xi−1

S ′′′g′ dx

= (S ′′g′)|b − (S ′′g′)|a −

n
∑

i=1

ci

∫ xi

xi−1

g′ dx

= S ′′(b)[f ′(b)− S ′(b)]− S ′′(a)[f ′(a)− S ′(a)]−
n

∑

i=1

ci[g(xi)− g(xi−1)]

= S ′′(b)[f ′(b)− S ′(b)]− S ′′(a)[f ′(a)− S ′(a)]

In case of natural spline, S ′′(b) = S ′′(a) = 0 and for the clamped boundaries, f ′(b)−S ′(b) and

S ′(a) = f ′(a). Hence, for both the natural and clamped boundaries, the required integral is

zero.

Note that the curvature of a curve described by y = f(x) is the quantity

κ =
|f ′′(x)|

[1 + {f ′(x)}2]3/2

If the nonlinear term is dropped, then |f ′′(x)| is a measure of approximate curvature. So

the natural cubic spline or the cubic spline with clamped boundary conditions has minimal

curvature among all functions having continuous second derivative and passing through the

knots.

Theorem (no proof): If f(x) is four times continuously differentiable and S is a cubic spline,

then for x ∈ [a, b]

|f(x)− S(x)| ≤
5

384
h4 max

x∈[a,b]
|f (4)(x)|,

where h = max0≤i≤n−1 hi. It can also be shown that for x ∈ [a, b]

|f ′(x)− S ′(x)| ≤
1

24
h3 max

x∈[a,b]
|f (4)(x)|,



This process can be continued upto 3rd derivative and the power of h decreases by one in each

step.


