1. Find $a, b, c, \alpha, \beta, \gamma$ so that

$$
S(x)= \begin{cases}a x^{3}+b x^{2}+c x+1, & x \in[-1,0] \\ x^{3}+\alpha x^{2}+\beta x+\gamma, & x \in[0,1]\end{cases}
$$

is a natural cubic spline for $(-1,-6),(0,1)$ and $(1,4)$.
Ans. We have $S^{\prime \prime}(1)=0 \Longrightarrow \alpha=-3, S(0)=1 \Longrightarrow \gamma=1, S(1)=4 \Longrightarrow \beta=5$. Also, $S^{\prime}(0+)=S^{\prime}(0-) \Longrightarrow c=\beta=5$ and $S^{\prime \prime}(0+)=S^{\prime \prime}(0-) \Longrightarrow b=\alpha=-3$. Finally, $S^{\prime \prime}(-1)=0 \Longrightarrow-6 a+2 b=0 \Longrightarrow a=-1$.
Thus, $a=-1, b=-3, c=5$ and $\alpha=-3, \beta=5, \gamma=1$.
(All correct 7 marks. Otherwise 1 mark for one parameter)
2. For the function $f(x)=\sin (1+x)-\sin (1)$, show that loss-of-significance error occurs in the evaluation for certain value of x. Without using Taylor series, reformulate the evaluation to minimize the error?

Ans. $1+x \approx 1$ for x near zero and hence loss-of-significance error occurs for x near 0 .
To reduce, we use $2 \cos (1+x / 2) \sin (x / 2)$ for x near zero.
(one mark for first part and two marks for second part)
3. For an n-vector x and an $n \times n$ matrix A, let $\|A\|$ be the matrix norm induced by the vector norm $\|x\|$. Show that $\|A x\| \leq\|A\|\|x\|$ for all x. Further, if A is nonsingular and B is any $n \times n$ singular matrix, then show that $\left\|A^{-1}\right\|\|A-B\| \geq 1$.

Ans. From definition, $\|A\|=\max _{x \neq 0}\|A x\| /\|x\|$. Hence, $\|A x\| /\|x\| \leq\|A\|$ for $x \neq 0 \Longrightarrow$ $\|A x\| \leq\|A\|\|x\|$. For $x=0$, equality holds.
Since B is singular, $\exists x \neq 0$ such that $B x=0$ and hence $A x=(A-B) x$
$\Longrightarrow x=A^{-1}(A-B) x \Longrightarrow\|x\| \leq\left\|A^{-1}\right\|\|A-B\|\|x\|$. Now $\|x\|>0$ and hence the result follow. (Three marks for each part)
4. Consider the matrix

$$
A=\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{3} \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right)
$$

Does the solution of $A x=b$ by Jacobi method for any initial $x^{(0)}$ converge? Justify your answer. Ans. We have

$$
\begin{aligned}
& x_{1}^{(k+1)}=(4 / 3) x_{2}^{(k)}+4 b_{1} \\
& x_{2}^{(k+1)}=(1 / 2) x_{1}^{(k)}+2 b_{2}
\end{aligned}
$$

Thus $x^{(k+1)}=G x^{(k)}+c$ where

$$
G=\left(\begin{array}{cc}
0 & \frac{4}{3} \\
\frac{1}{2} & 0
\end{array}\right)
$$

Eigenvalues of G are $\sqrt{2 / 3}$ and hence $\rho(G)<1$ and thus iteration converges.
(Two marks for G and two marks for $\rho(G)$. Note that diagonal dominance is not necessary for convergence)

