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pitching airfoil.ABSTRACT

We discuss the stabilized finite element computation of unsteady in-

compressible flows, with emphasis on the space-time formulations, it-

erative solution techniques and implementations on the massively par-
allel architectures such as the Connection Machines. The stabilization

technique employed in this paper is the Galerkinjleast-squares (GLS)
method. The Deformable-Spatial-DomainjStabilized-Space- Time
(DSDjSST) formulation was developed for computation of unsteady
viscous incompressible flows which involve moving boundaries and in-

terfaces. In this approach, the stabilized finite element formulations

of the governing equations are written over the space-time domain

of the problem, and therefore the deformation of the spatial domain
with respect to time is taken into account automatically. This ap-

proach gives us the capability to solve a large class of problems with

free surfaces, moving interfaces, and fluid-structure and fluid-particle
interactions. In the DSDjSST approach the frequency of remeshing
is minimized to minimize the projection errors involved in remeshing
and also to increase the parallelization potential of the computations.
We present a new mesh moving scheme that minimizes the need for

remeshing; in this scheme the motion of the mesh is governed by the

modified equations of linear homogeneous elasticity. The implicit equa-
tion systems arising from the finite element discretizations are solved

iteratively by using the GMRES search technique with the clustered

element-by-element, diagonal and nodal-block-diagonal precondition-
ers. Formulations with diagonal and nodal-block-diagonal precondi-
tioners have been implemented on the Connection Machines CM-200
and CM-5. We also describe a new mixed preconditioning method we

developed recently, and discuss the extension of this method to totally

unstructured meshes. This mixed preconditioning method is similar,
in philosophy, to multi-grid methods, but does not need any intermedi-
ate grid levels, and therefore is applicable to unstructured meshes and

is simple to implement. The application problems considered include

various free-surface flows and simple fluid-structure interaction prob-
lems such as vortex-induced oscillations of a cylinder and flow past a
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1 INTRODUCTION

In this paper, we focus on finite element computation of unsteady in-
compressible flows governed by the Navier-Stokes equations. Although
a great majority of the computations we report in this paper are based
on the velocity-pressure formulation of the Navier-Stokes equations, we
also report some Newtonian flow computations based on the velocity-
pressure-stress formulation. It is of course not necessary for Newto-
nian flow computations to be based on the velocity-pressure-stress for-
mulation; however, we consider these computations to be prelude to
non-Newtonian flow computations, which would necessitate the stress
tensor to be treated as a separate unknown.

Finite element computations based on the standard Galerkin for-
mulation of incompressible flows can involve numerical instabilities due
to the presence of advection terms in the governing equations, and due
to using inappropriate combinations of interpolation functions to rep-
resent the velocity, pressure and stress fields. To stabilize the computa-
tions, in this paper, we use the Galerkinjleast-squares (GLS) formula-
tion [1]-[6]. This formulation is consistent in the sense that an exact so-
lution still satisfies the stabilized formulation. Consequently, potential
numerical oscillations are prevented without introducing excessive nu-
merical diffusion (i.e., without "over-stabilizing") and therefore without
compromising the accuracy of the solution. For unsteady flow computa-
tions based on the velocity-pressure formulation, the GLS formulation
is implemented in a strict way by using a space-time finite element ap-
proach [3]-[5]. For computations based on the velocity-pressure-stress
formulation, on the other hand, to avoid the high cost associated with
the space-time technique, we implement the GLS formulation in a less
strict way [7]. We achieve this by time-discretizing the time derivative
of the weighting functions before the spatial discretization; this saves
us from being forced into a space-time formulation.

A major cha.llenge in computational fluid dynamics is how to handle
moving boundaries and interfaces, such as free-surface flows, two-liquid
flows, fluid-particle and fluid-structure interactions. In the DSDjSST

(Deforming-Spatial-DomainjStabilized-Space- Time) procedure [3]-[5],
the GLS-stabilized formulation of the problem is written over the as-
sociated space-time domain. In this way, we automatically take into
account the deformation of the spatial domain and also protect the
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nique and the diagonal and nodal-block-diagonal preconditioning meth-
ods. The next step will be the implementations based on the CEBE
preconditioning and eventually the mixed CEBE/CC preconditioning.
It is our belief that the mixed CEBE/CC preconditioning technique
will be more easily parallelizable than the multi-grid methods.

We present several numerical examples, including those involving
the dynamics of liquid drops and other free-surface flows, and flows
past oscillating airfoils.

SPACE-TIME VELOCITY-PRESSURE
FORMULATION

2.

Consider a viscous, incompressible fluid occupying at an instant t E
(0, T) a bounded region fit C lln",. with boundary r t, where n.d is the
number of space dimensions. The velocity and pressure. u(x.t) and
p(x, i), are governed by the Navier-Stokes equations:

p (~ + u. Vu - f) - V . D' = 0 on fit Vt E (0, T),

V. u = 0 on fit Vt E (0, T), \~J

(1)

(')\

where p is the fluid density. The general body force f(x, t) can, e.g.,
represent the gravity. For a fluid with viscosity JI., the stress tensor D"
can be decomposed into the isotropic and deviatoric parts:

D"=-pI+T, T=2J1.t(u), t(U)=~(Vu+(VU)T). (3)

Both the Dirichlet- and Neumann-type boundary conditions are taken
into account, represented as

on crt)"
on crt)"

u =9
n'(7 =h

(4)
(~,

where (f,), and (f,), are complementary subsets of the boundary f,.
The initial condition consists of a specified divergence-free velocity field:

u(x,O) = Uo on 110. (6)

In order to construct the finite element function spaces for the
space-time method, we partition the time interval (0, T) into subin-
tervals In = (tn. tn+l), where tn and tn+l belong to an ordered series
of time levels 0 = to < tl < . . . < tN = T. Let I1n = l1'n and r n = f'n.

We will define the space-time slab Qn as the domain enclosed by the
surfaces I1n. I1n+l' and Pn. where Pn is the surface described by the
boundary f I as t traverses In. As it is the case with f" surface Pn
can be decomposed into (Pn), and (Pn), with respect to the type of
boundary condition (Dirichlet or Neumann) being applied. For each
space-time slab, we define the following finite element interpolation
function spaces for the velocity and pressure:

h { hh [ lh ] n'.h...JI }(Su)n = u I u E H (Qn) ,u = ~ on (Pn),. (7)

h { h h [ Ih Q ] n,. h.
}(Vu)n=UluEH(,,) .u=Oon(Pn)" (8)

(S;)n = (V;)n = {ph Iph E Hlh(Qn)}. (9)

Over the element domain. the interpolation is constructed by using
first-order polynomials in space and, depending on our choice, zeroth-
or first-order polynomials in time. Globally, the interpolation func-
tions are continuous in space but discontinuous in time. However, for
two-liquid flows, the solution and variational function spaces for pres-
sure sh~uld include the functions which are discontinuous across the
interface.

The stabilized space-time formulation for deforming domains can
be written as follows: given (uh);;-, find uh E (S~)n and ph E (S;)n
such that 'Vwh E (V~)n. 'Vqh E (V;)n:

, h1 h au h h
w'p +u.Vu-f

Qn
dQ + f t(Wh): ~(ph, uh)dQ

.JQnat
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f qkpv.ukdQ+l (Wk)~.p((Uk)~_(Uk);;-)dn
JQn On

(n,')n f
[ (awk ) ]L JC,T p ~+Uk.Vwk -V.a(qk,wk)

.=1 Qn

[ (aUk k" k ~ k k
]. P 7jt+U .vu -f) -V.a(p ,u) dQ

(n.,)n '

L i bV.wkpV.ukdQ=l wk.hkdP,
.=1 Q:, (Pn),

- k v. WhphdU + kE(Wh): ThdU

+ ..!.- fSh:ThdU- fSh:E(Uh)dU+ fqhpV.uhdU
2v in in in
n., f

[ (owh ) ]+ ~in.T P at+uh.VWh +Vqh_V'Sh

[ (ouh h h ) h h]. P -at + u . Vu - f + Vp - V.T dU

+ ~ k.o2v [~Sh - E(Wh)]: [~Th - E(uh)] dU

n., f
+ Lir. 6v.whpv.uhdu=1 wh.hhdr..=1 n. r.

+ (10)

where
(Uk); = lim u(tn Ie). (11)

.-0

The solution to (10) is obtained sequentially for all the space-time slabs

Q\,Q2,.. .,QN-\. The computations start with

(uk); = Uo. (12)

(17)

Remarks

4. Aside from stabilization terms described in Section 2, the formu-
lation given by (17) includes a least-squares form of the constitu-
tive equation (3). Consequently, this formulation can be applied
in conjunction with arbitrary combinations of interpolation func-
tions for all variables, including presently employed equal-order
bilinear combination.

5. Definitions of the coefficients T, 6 and a, as well as stability proof
and error analysis for the steady-state case are given in [6].

6- In the computations that follow, formulation (17) has been dis-
cretized in time with the Crank-Nicholson scheme. The use of
discontinuous Galerkin discretization (space-time method) is also
planned.

7. The time derivative of the velocity weighting function represents
the variation of the time derivative of the velocity itself. For
example, in the case of space-time method, this term is the true
time derivative of the weighting function. On the other hand, in
the case of Euler-type time discretization with time step I:lt, the
term &u" / &t is replaced by (U~+l - u~)/ I:lt, with u~ known, and
thus the variation term becomes w" / I:lt.

Remarks

1. In the variational formulation given by (10), the first three terms
of the left hand side, together with the right hand side, constitute
the standard Galerkin formulation of the problem. The fourth
integral enforces, in a weak sense, the continuity of the velocity
in time.

2. The fifth term in (10) is a least-squares addition to the formula-
tion, and this term provides the necessary stability for advection-
dominated flows in the presence of sharp boundary layers. The
same term stabilizes the method against numerical oscillations
which arise from certain combinations of interpolations for veloc-
ity and pressure, including the equal-order bilinear interpolation
used in the current computations. See [3] for definition of the
stabilization co('fficient T.

3. At high Reynolds numbers, the stability is improved by incor-
porating the sixth term into formulation (10); this is the least-
squares term for the continuity equation. The coefficient (\' is
defined in [5].

VELOCITY -PRESSURE-STRESS FORMULATION3.

The physical problem under consideration is the same as the one de-
fined by equations (1)-(6), i.e., Navier-Stokes equations for flows of
incompressible Newtonian fluid. However, the n.d( n.d + 1 )/2 indepen-
dent components of the deviatoric stress tensor T are treated as addi-
tional unknowns, and equation (3)2 enters the variational formulation
directly. The case of deforming domains is not covered here, so the
subscripts denoting domain time level are dropped. The interpolation
function spaces for the velocity, pressure and deviatoric stress tensor
are given as:

4. NUMERICAL EXAMPLES

s~ = {Uh I Uh e [Hlh({}>]"'d,uh:::,.. on r,},

V~ = {uhluhe[Hlh(n)]"'d,uh:::O onr,},

s; = V; = {ph I ph e Hlh({})},

s.!:. = V.!:. = Th I T~ e [Hlh({})]"'d("'d+l)/~}

(13)

(14)

(15)

(16)

Viscous drop falling in a viscous fluid

In this axisymmetric simulation, gravity is applied to two different
fluids which causes the heavier fluid (drop) to fa.ll and deform until ter-
minal velocity and shape are reached. Surface tension is accounted for.
At terminal velocity, the Reynolds number is 105, the Weber number
is 5.51, and the drag coefficient is 1.61. Shown in Figure 2 is the drop
at 5 equa.lly spaced instants throughout the simulation. Also shown
is an iso-surface of the vorticity and two iso-surfaces of the stream
function. The finite element mesh consist of 8,151 nodes and 7,865 el-
ements. The simulation was performed on a CM-5 supercomputer. At
each non-linear iteration within each time step, approximately 48,000
equations are solved simultaneously using the GMRES technique with
a diagonal preconditioner. To follow the motion of the drop as it falls,
the entire finite element mesh translates together with the drop so that
the center of gravity of the drop stays at the same location relative to
the mesh.

A new mesh moving scheme is used to deform the mesh as the drop
changes its shape. In this mesh moving scheme, a linear, elastostatics
problem is solved whenever the mesh from the previous time step or it-
eration needs to be deformed into a new one. The boundary conditions
for this elastostatics problem are used to define the new, desired shape
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The velocity-pressure-stress formulation given here is an extension
of Method II described in [6] to time-dependent problems, and can be
written as follows: find u" E S~, p" E S; and T" E S~ such that
Itw" E V~, Itq" E V; and itS" E V~



of the domain, and then the interior nodes get distributed accordingly.
The equation being solved is Flow past an oscillating airfoil at Reynolds number 1, 000

Flow at Reynolds number 1,000 is forced past a NACA 0012 air-
foil which is oscillating with a non-dimensional frequency of 1.0. The
airfoil oscillates between angles of attack of 10 and 30 degrees. Shown
in Figure 6 is the vorticity at various instances during the simulation.
The simulation was performed on a CM-5 supercomputer. At each
non-linear iteration within each time step, roughly 39,000 equations
are solved simultaneously using the GMRES technique with a diagonal
preconditioner. The movement of the airfoil is facilitated by deforma-
tions in the space-time domain; and thus, no remeshing was needed.
The finite element mesh, which consists of 6,609 nodes and 6,460 ele-
ments, can be seen in Figure 7, at 100 and 300 angle of attack.

Vortex-induced vibrations of a cylinder in vertical direction

This problem represents a simple model of fluid-structure interac-
tion. A cylinder mounted on lightly damped springs is allowed to move
in the vertical direction in response to the fluid forces acting on it.
The motion of the cylinder alters the vortex shedding mechanism of
the cylinder significantly and leads to several interesting physical phe-
nomena. A detailed numerical investigation of such an oscillator can
be found in [5]. The motion of the cylinder is governed by the following

equation:

u'?] j = 0 in n

, ", (18)

with tl'm defined as

(22)

where a is the radius of the cylinder, U is the free stream velocity
and In is the actual natural frequency of the system. In this problem,
Fn = 66/ Re, M = 472.74 and ( = 3.3 X 10-4. Results are presented for
two different Reynolds numbers - 324 and 300. For both cases, the

unsteady flow past a fixed cylinder at the respective Reynolds numbers
is used as the initial condition. The time step for the computations is
1.0. The finite element mesh consists of 4,209 nodes and 4,060 elements.
At each time step approximately 25,000 equations are solved using the
GMRES technique. In both cases, as a result of the cylinder vibrations,
the drag and the torque acting on the cylinder increase substantially
while there is a decrease in the amplitude of the lift acting on the

cylinder.

Reynolds number 32"-

For Reynolds number 324 the reduced natural frequency of the
spring-mass system and the Strouhal number for flow past a fixed
cylinder have very close values. As soon as the cylinder is released
it starts oscillating with an amplitude that increases with time. Even-
tually, a temporally periodic solution is obtained. Figure 8 shows the
time histories of the drag and lift coefficients and the normalized ver-
tical displacement of the cylinder for the periodic solution. Figure 9
shows a sequence of frames displaying the vorticity field during one
period .of the cylinder motion. The first and last frames correspond,
respectively, to the lower and upper extreme positions of the cylin-
der while the middle frame corresponds to the mean cylinder location.
The vortices in the wake of the oscillating cylinder have a larger lat-
eral dimension compared to those in the wake of a fixed cylinder. The
solution was computed on CRAY-XMP-EA. The linear equation sys-
tem resulting from the finite element discretizations is solved using the

u'iJ = Cijklck), (19)

where Cijkl are the fictitious Hookean elastic coefficients, and Em de-
fined as

v~ + v~.ck) = I.) )", (20)
2

where vm denotes displacements of the nodes. To better preserve the
structure of the original mesh in the high resolution regions, the smaller
elements are made stiffer than the larger ones. The modification is
achieved by dropping, in the computation of the stiffness matrix, the
Jacobian of the transformation from the element domain to the physical
domain. By doing so, the smaller elements become stiffer than the
larger ones; and thus, retain their shapes better. In this problem, we
control the distribution of the nodes at the interface to have equal
spacing throughout time.

Vortex interaction with a free surface

In this free surface problem (see Figure 3), surface deformations
are generated by a pair of vortices approaching the surface from be-
low. The vortices create large surface deformations, and eventually the
generated wave breaks. The problem was solved with 7,802 elements
and 8,016 nodes. The 47,570 field equations and 15,437 mesh move-
ments equations were solved on CM-5 using a GMRES technique with
a diagonal preconditioner. The results we report here are preliminary
and were obtained with no remeshing at all. However, it is quite clear
that this is a problem in which we will need some remeshing once in a
while. In fact, due to unacceptable level of mesh distortions, after the
last frame in Fi~ure 3. the simulation becomes unreliable. In future

simulations, remeshing will be used to generate a new mesh when the
current mesh gets too distorted.

Fountain

The space-time formulation is applied here to solve a problem in-
volving dramatic deformation of the initial domain. A flow from a
fountain is simulated by prescribing a unit vertical velocity at the lower
(inflow) boundary of an initially rectangular 1.0 x 2.0 domain. Vertical
slip condition is imposed at the side walls of the initial domain, while
the topmost (outflow) boundary is left free. As the fluid enters the
domain, it overflows the slip walls and falls down under the influence
of unit gravity. The fluid is assumed to be inviscid, and the time step is
taken as 0.05. Three finite element meshes and pressure fields from this
simulation are shown in Figure 4. In this case, a new mesh is generated
automatically every time the domain is deformed, and the solution is
projected from the old mesh to the new one. The number of elements
grows from the initial 614 to 2,126 at t = 6.0.

Sprinkler

Similarly to the preceding example, the space-time formulation is
used here to simulate flow from a sprinkler-like configuration. A short
vertical pipe 2.0 units long and 1.0 unit wide is located 0.5 units above
a perpendicular plate blocking the flow of fluid from the pipe. The fluid
enters at the upper end of the pipe with unit downward velocity. The
vertical pipe walls, as well as the blocking plate, are assumed to permit
slip along the surface. The fluid flows around the plate and proceeds
downward under the influence of a unit gravity force. The viscosity
of the fluid is 0.001, while the time step is taken as 0.01. In this
problem the surface tension coefficient at the fluid interface is 0.001.
Three finite element meshes and pressure fields are shown in Figure 5.
As in the preceding problem, large deformation of the domain justifies
regeneration of the finite element mesh at every time step. The element
count increases from 780 to 1,840 at t = 4.0.
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Here Y represents the normalized vertical displacement of the cylin-
der. The displacement and the velocity of the cylinder are normal-
ized by its radius and the free-stream velocity respectively. _M is the
non-dimensional mass/unit length of the cylinder, ( is the structural
damping coefficient associated with the system, and CL denotes the lift
coefficient for the cylinder. Fn is the reduced natura.! frequency of the

spring-mass system and is defined as:

Fn = 2fna



GMRES method in conjunction with CEBE preconditioner [10]. An
average cluster size of 23 elements and a Krylov space of dimension 25
was used for the computations.

Reynolds number .100

At Reynolds number 300 the reduced natural frequency of the
spring-mass system is larger than the Strouhal number for flow past
a fixed cylinder. Initially, the oscillator exhibits the phenomenon of
beats. At a later time, the vortex shedding frequency of the'cylinder
locks on to the natural frequency of the spring-mass system. Finally
the cylinder reaches a periodic oscillation amplitude of approximately
one radius. Figure 10 shows the time histories of the drag and lift coef-
ficients and the normalized vertical displacement of the cylinder when
it reaches a temporally periodic state. Figure 11 shows a sequence of
frames displaying the vorticity field during one period of the cylinder
motion. The first and last frames correspond, respectively, to the lower
and upper extreme positions of the cylinder while the middle frame cor-
responds to the mean cylinder location. In this case, the longitudinal
spacing between the vortices in the wake of the cylinder is smaller than
that for a fixed cylinder. This arrangement of vortices appears to be
unstable and therefore the vortices coalesce downstream. These com-
putations were carried out on CM-5. The linear equation system is
solved using GMRES in conjunction with a diagonal preconditioner.
The dimension of the Krylov space used is 30.

Flow past a stationary NACA 0012 airfoil at Reynolds number 100,000

Unsteady laminar solution is computed for flow past a stationary
N ACA 0012 airfoil at 10° angle of attack. The Reynolds number, based
on the chord length of the airfoil and the free-stream velocity, is 100,000.
The finite element mesh employed for this simulation collsists of 26,900
nodes and 26,600 quadrilateral elements. The airfoil of unit chord
len~th is located at (0.01. The comr>utatiollal domaill liE's ill a rectan-

gular box whose bottom left alld top right coordinates are (-6,-6) alld
(20,6), respectively. The time step is 0.002. A ulliform illflow velocity
of 1.0 is specified at the left boullda.ry. The right boulldary is an out-
flow boundary, and traction-free condition is applied there. Symmetry
conditions at the lower and upper boulldaries alld the no-slip condition
at the airfoil surface are specified. At each time step approximately
160,000 equations are solved using the GMRES method in conjunction
with a diagonal preconditioner. The dimension of the Krylov vector
space employed is 50. These computations were carried out on CM-5.

Figure 12 shows, respectively, a sequence of frames displaying the
vorticity field and stream function at five different instants. From these
pictures, it can be observed that the flow 011 the upper surface of the
airfoil separates very close to the leading edge. Our computations do
not reveal any apparent periodicity in the shedding of the vortex struc-
tures. This fact also manifests itself in the time histories of the lift and
drag coefficients on the airfoil which are shown in Figure 13. We do
realize that, in reality, flows at such high Reynolds numbers are turbu-
lent. Our goal here is to demonstrate that our formulations are robust
enough to handle numerical challenges posed by such high Reynolds
number flows.

Flow past a freely falling NACA 0012 airfoil

This simulation involves a NACA 0012 airfoil fallillg ullder the ac-
tion of gravity and fluid forces. The airfoil is assumed to be made of a
material with density of 50. The dellsity of the surrounding fluid is 1.
Based on the density and the shape of the airfoil its mass alld polar mo-
ment of inertia are, respectively, 4.068 and 0.224. The center of gravity
of the airfoil lies at 0.417 chord lengths from the leadillg edge. The air-
foil of unit chord length is initially located at (0,0). The computational
domain lies in a rectangular box whose bottom left and top right coor-
dinates are (-10,-10) alld (20,10), respectively. The gravitatiollal force,
of magnitude 1.0, acts in the negative x-direction. The finite element
mesh employed for this simulation consists of 8,446 lIodes alld 8,304

elements. Zero velocity is specified at the left and the top boulldaries.
At the lower boundary, second compollellt (the compollellt normal to
the lower boulldary) of velocity is specified a zero value. while the other
component is free. Traction free boundary conditions are specified at
the right boundary. The viscosity of the fluid is 0.01. The time step is
0.025.

At t = 0, the airfoil is released from rest at a 10. allgle from the

line of gravity. Figure 14 shows the time histories of the forces, ve-
locities and the displacements associated with the airfoil. The pitch
rate and the displacement are ill degreesjullit time and degrees, re-
spectively; the linear velocities and displacemellts are reported for the
mid-chord point of the airfoil. We observe from the figure that the
airfoil reaches a temporally periodic solution. 111 additioll to having
a linear velocity, there is a superimposed pitchillg motioll. Figure 15
shows a sequence of frames of the vorticity field at various iIIstants
during one pitch cycle of the airfoil. The frames ill the left column
show the global vorticity fields; the close-ups around the airfoil are dis-
played ill the right column. 111 our computations, we move the mesh
with the velocity of the mid-chord poillt of the airfoil. The pitchillg
motion of the airfoil is accommodated by movillg the nodes accordillg
to a scheme described ill [.5]. It should be lIoted that this problem ill-
volves very large displacemellts of the a.irfoil; despite that, we are able
to carry out the computatiolls without remeshillg. These results were
computed on CM-5.

Flow past a "projectile"

111 this problem we simulate the dynamics of a "projectile". The
projectile is modeled by a two dimensional, missile-like object. The
nose section of the projectile, olle-fifth of the chord, is a half ellipse.
The rema.illing part of tht! object is a. rectallgle with roullded off corners.
The maximum thicklless of the projectile is 12 percent of the chord.
The fillite elemellt mesh used for this problem is very similar to the one
in the previous problem. The dellsitv of the lIose is 1.000 while that
of the rest of the object. is 50. The dellsity of the surroulldillg fluid
is 1. The mass alld polar moment of iIIertia are, respectively, 23.64
and 1.23. The cellter of gravity of the projectile lies at 0.21 chord
lengths from the leadillg edge. The gravity force, of magllitude 0.005,
acts in the negative y direction. Zero velocity is specified at the left
boundary. At the lower and upper boundaries second component (the
component normal to the boundary) of velocity is specified a zero value.
Traction free boulldary conditions are specified at the right boundary.
The viscosity of the fluid is 0.001. The time step used is 0.025.

The iIIitial colldition for this simulation is the uII.~teady solution for
flow past the projectile which is beillg towed at a 10. allgle of attack
ill the negative z direction at a speed of 1.0. Theil the projectile is re-
leased. Figure 16 shows the time histories of the forces, velocities and
the displacements of the projectile. The pitch rate alld displacernellt
are ill degreesjullit time and degrees, respectively; the linear velocities
and displacements are reported for the mid chord point of the projec-
tile. Figure 17 shows a sequence of frames of the vorticity field and
stream function at various instants during the computatioll. From the
figures we observe that as the simulation progresses the magllitude of
the vertical compollent of velocity illcreases while that of the horizontal
component decreases. As expected, the overall speed of the projectile
decreases. Also, the pitch displacement of the projectile iIIcreases with
time but the angle of attack stays at a value close to zero. This fact
can be observed from the stream function pictures.

Flow past a cylinder at Reynolds number 5,000

The velocity-pressure-stress formulation is used to compute flow
past a fixed cylinder in two dimensions, at Reynolds number 5,000. The
upper and lower boundaries are flow symmetry lilies, while the down-
stream boundary is traction-free. The mesh consists of 21.408 quadri-
lateral elements, with contilluous bilinear illterpolation fullctions for all
variables. The elemellt size near the cylinder surface is of the order 0.01.
A time step size of 0.1 was selected to provide sufficiellt resolution of the
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REFERENCESvortex shedding periods. A diagonal scaling with no preconditioning
was applied to the system. The Krylov subspace size is 50, with 5 outer
GMRES iterations, and, typica.11y, 4 non-linear iterations per time step.
The simulation was continued for 2,080 time steps after restart from a
steady-state solution at Reynolds number 100, and reached a periodic
state with Strouhal number 0.256, near t = 100.0. This state is char-
acterized by a downward deflection of the vortex street, and non-zero
positive mean value of the lift coefficient. The presence of two distinct
periodic solutions at this Reynolds number was confirmed by numeri-
ca.11y inverting, at t = 160.0, the entire flow field about the horizontal
line passing through the center of the cylinder. The resulting upward
deflection of the wake continued unperturbed, proving that the two
solutions (upward and downward biased) are equally admissible by the

system.
Four different vorticity fields are shown in Figure 18. The four

frames represent the fully developed periodic flow field, at an instant
when the lift coefficient attains the maximum, mean and minimum and
subsequent mean values, respectively. The entire time history of the
drag altod lift coefficients is shown in Figures 19 and 20.

The performance measurements taken for this problem revealed the
total computation speed of 560 mega.flops on CM-200 computer with
32,768 processors. This figure includes parallel output of data to the
DataVault mass storage system. In the solution phase the speed of
communication-bound GMRES solver routine applied to the system
with 129,610 degrees offreedom was 520 megaflops. On the other hand,
the highly parallel matrix formation phase achieved 1,610 megaflops on
the same machine. All computations were performed in double (64-bit)

precision.
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Figure 1. The CEBE/CC strategy for totally unstructured meshes:
the fine (primary) and coarse (companion) meshes and the cluster of
elements associated to a typical element of the coarse mesh.
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Figure 2. Falling viscous drop: shape (left), iso-surface of vorticity (right top) and iso-surfaces of stream function (right bottom) at terminal
velocity.
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Figure 3. Vortex interaction with a free surface: meUi (left) and vorticity (right) at different instants
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Figure 6. Flow past an oscillating NACA 0012 airfoil at Reynolds number 1.000: vorticity field evolution

Figure 7. Flow past an oscillating f\Cl\ 0012 airfoil at Reynolds rturnber 1,000: mesh at 100 and 300 angle of attar
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Figure 8. Flow past a vertically oscillating cylinder at Reynolds number
324: time histories of the drag and lift coefficients and the normalized
vertical displacement.

Figure 10. Flow past a vertically oscillating cylinder at Reynolds num
ber 300: time histories of the drag and lift coefficients and the normal.
ized vertical displacement.

Figure 11. Flo\v past a vertically oscillating cylinder at Reynolds num.
ber 300: vorticity at the lowest, mean and highest location of the cylin.

der.

Figure 9. Flow past a vertically oscillating cylinder at Reynolds number
324: vorticity at the lowest, mean and highest location of the cylinder.
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Figure 12. Flow past a fixed NACA 0012 airfoil at Reynolds number 100,000: vorticity (left column) and streamlines (right I:olumn) at t =
14.4,14.6,14.8,15 and 15.2.
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Figure 15. Flow past a freely falling NACA 0012 airfoil: vorticity at vari~us instants during one pitch cycle of the airfoil.
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vorticity (If!ft. colullln) and slrf!alll function (right colullln) at I = O.O.17.:j.:J5.0.:;:2.5.70.0 and 87.5.Figure 17. Flow past a ~projectile"
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