QUIZ 1, MTH309A
 TOTAL MARKS: 5

ROLL NO:
NAME:

Instructions:
(1) Tick (\checkmark) ALL correct answers among the options given. Illegible answers will be taken as incorrect.
(2) You get no credit for rough work. No extra pages will be supplied.
(3) \mathbb{R} and \mathbb{C} denote the set of real numbers and the set of complex numbers respectively.
(4) You may refer to your own class notes. Searching in books/internet is not allowed.

Problems:
Q1. The statement 'The set of Rational numbers is a Borel subset of \mathbb{R} ' is
(a) true.
(b) false.

Q2. Let μ be a probability measure on (Ω, \mathcal{F}). Then the statement ' $\mu(A \backslash B)=\mu(A)-\mu(B)$ for all $A, B \in \mathcal{F}$ with $B \subseteq A^{\prime}$ is
(a) true.
(b) false.

Q3. Let A and B be two sets with probability 1 in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then the statement ${ }^{'} \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$ '
(a) is true.
(b) is false.
(c) can not be determined from the given hypothesis.

Q4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Consider the collection $\mathcal{A}:=\{A \in \mathcal{F} \mid \mathbb{P}(A)=0$ or 1$\}$. Then the fact ' \mathcal{A} is a σ-field'
(a) is true.
(b) is false.
(c) can not be determined from the given hypothesis.

Q5. Let \mathbb{P}_{1} and \mathbb{P}_{2} be two probability measures on a measurable space (Ω, \mathcal{F}). Consider the collection $\mathcal{C}:=\left\{A \in \mathcal{F} \mid \mathbb{P}_{1}(A)=\mathbb{P}_{2}(A)\right\}$. Then \mathcal{C} is
(a) non-empty.
(b) closed under complementation.
(c) a Monotone class.

Q6. Fix $t \in \mathbb{R}$. Consider the following functions: $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{C}$ defined by

$$
f(x):=\sin (t x), g(x):=\cos (t x), h(x):=e^{i t x}
$$

Then
(a) Only f and g is Borel measurable, h is not.
(b) All are Borel measurable.
(c) None are Borel measurable.

Q7. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x):=\exp \left(-\frac{x^{2}}{2}\right), x \in \mathbb{R}$. Then the statement 'The function f can be uniformly approximated by simple functions on $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$ ' is
(a) true.
(b) false.

[^0]
[^0]: Date: January 28, 2019. Time: 14:00-14:50 hrs.

