QUIZ 1, MTH309A TOTAL MARKS: 5

ROLL NO: NAME:

Instructions:

- (1) Tick (\checkmark) ALL correct answers among the options given. Illegible answers will be taken as incorrect.
- (2) You get no credit for rough work. No extra pages will be supplied.
- (3) \mathbb{R} and \mathbb{C} denote the set of real numbers and the set of complex numbers respectively.
- (4) You may refer to your own class notes. Searching in books/internet is not allowed.

Problems:

- Q1. The statement 'The set of Rational numbers is a Borel subset of \mathbb{R} ' is [1]
 - (a) true.(b) false.
- Q2. Let μ be a probability measure on (Ω, \mathcal{F}) . Then the statement $(\mu(A \setminus B) = \mu(A) \mu(B))$ for all $A, B \in \mathcal{F}$ with $B \subseteq A$ is $[\frac{1}{2}]$
 - (a) true.
 - (b) false.
- Q3. Let A and B be two sets with probability 1 in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then the statement $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$ ' [1]
 - (a) is true.
 - (b) is false.
 - (c) can not be determined from the given hypothesis.
- Q4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Consider the collection $\mathcal{A} := \{A \in \mathcal{F} \mid \mathbb{P}(A) = 0 \text{ or } 1\}$. Then the fact ' \mathcal{A} is a σ -field' [1]
 - (a) is true.
 - (b) is false.
 - (c) can not be determined from the given hypothesis.
- Q5. Let \mathbb{P}_1 and \mathbb{P}_2 be two probability measures on a measurable space (Ω, \mathcal{F}) . Consider the collection $\mathcal{C} := \{A \in \mathcal{F} \mid \mathbb{P}_1(A) = \mathbb{P}_2(A)\}$. Then \mathcal{C} is $[\frac{1}{2}]$
 - (a) non-empty.
 - (b) closed under complementation.
 - (c) a Monotone class.

Q6. Fix $t \in \mathbb{R}$. Consider the following functions: $f, g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{C}$ defined by

$$f(x) := \sin(tx), \ g(x) := \cos(tx), \ h(x) := e^{itx}.$$

Then

- (a) Only f and g is Borel measurable, h is not.
- (b) All are Borel measurable.
- (c) None are Borel measurable.

Q7. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := \exp(-\frac{x^2}{2}), x \in \mathbb{R}$. Then the statement 'The function f can be uniformly approximated by simple functions on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$ ' is $[\frac{1}{2}]$ (a) true.

(b) false.

 $[\frac{1}{2}]$

Date: January 28, 2019. Time: 14:00 - 14:50 hrs.