QUIZ 2, MTH309A TOTAL MARKS: 5

ROLL NO: NAME:

Instructions:

- (1) Tick (\checkmark) ALL correct answers among the options given. Illegible answers will be taken as incorrect. You get no credit for rough work. No extra pages will be supplied.
- (2) You may refer to your own class notes. Searching in books/internet is not allowed.

Problems:

- Q1. Fix 1 . Then convergence in*p*-th mean implies
 - (a) convergence in q-th mean for any $q \in [1, p]$.
 - (b) convergence in q-th mean for any $q \in [p, \infty)$.
 - (c) almost sure convergence.
 - (d) convergence in probability.
- Q2. Let X, Y and Z be real valued random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then the collection $\{X, Y, Z\}$ is independent if [1]
 - (a) the joint distribution satisfies $F_{X,Y,Z}(x,y,z) = F_X(x)F_Y(y)F_Z(z), \forall x, y, z \in \mathbb{R}$.
 - (b) all the random variables are absolutely continuous and the joint distribution has a density function given by $f_{X,Y,Z}(x, y, z) = f_X(x)f_Y(y)f_Z(z), \forall x, y, z \in \mathbb{R}.$
 - (c) the collections $\{X, Y\}$, $\{Y, Z\}$ and $\{Z, X\}$ are independent.
- Q3. Let $\{X_n\}$ be a sequence of real valued random variables on the same probability space such that the distribution of X_n is $N(0, \frac{1}{n})$ for all n. Then [1]
 - (a) the sequence $\{X_n\}$ converges to 0 in probability.
 - (b) $\delta_0 \ll N(0, \frac{1}{n})$ for all n.
 - (c) None of the above two statements can be determined from the given hypothesis.
- Q4. Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, where $2^{\mathbb{N}}$ is the power set of the set of natural numbers \mathbb{N} and μ is the counting measure. Consider the function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ given by

$$f(m,n) := \begin{cases} m, \text{ if } m = n, \\ -m, \text{ if } n = m + 1, \\ 0, \text{ otherwise.} \end{cases}$$

Then

- (a) $\int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(m) d\mu(n) = \int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(n) d\mu(m) = 0.$
- (b) $\int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(m) d\mu(n) = \int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(n) d\mu(m) = \infty.$
- (c) $\int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(m) d\mu(n) = 0, \int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(n) d\mu(m) = \infty.$
- (d) $\int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(m) d\mu(n) = \infty, \int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\mu(n) d\mu(m) = 0.$
- Q5. Consider the Lebesgue measure *Leb* restricted to the interval (0, 1]. Let $A_n(x)$ denote the number of occurrences of the digit 1 in the first *n* digits of (non-terminating) decimal expansion of the number *x*. Suppose that¹ for every $\epsilon > 0$,

$$\sum_{n=1}^{\infty} Leb\left(x \in (0,1]: \left|\frac{A_n(x)}{n} - \frac{1}{10}\right| > \epsilon\right) < \infty.$$

Then

(a) Leb is a probability measure on $((0, 1], \mathbb{B}_{(0,1]})$.

(b)
$$Leb\left(x \in (0,1]: \left|\frac{A_n(x)}{n} - \frac{1}{10}\right| > \epsilon \text{ infinitely often}\right) = 0 \text{ for all } \epsilon > 0.$$

(c) $Leb\left(x \in (0,1]: \left|\frac{A_n(x)}{n} - \frac{1}{10}\right| > \epsilon \text{ infinitely often}\right) = 1 \text{ for all } \epsilon > 0.$

Date: March 11, 2019. Time: 14:00 - 14:50 hrs.

[1]

[1]

[1]

¹this fact is related to Borel's Normal Number theorem. Take a look <u>after</u> the quiz if you are interested