QUIZ 3, MTH309A TOTAL MARKS: 5

ROLL NO: NAME:

Instructions:

- Tick (✓) ALL correct answers among the options given. Illegible answers will be taken as incorrect. You get no credit for rough work. No extra pages will be supplied.
- (2) You may refer to your own class notes. Searching in books/internet is not allowed.

Problems:

- Q1. Let $\{X_n\}$ be a sequence of real valued, independent random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $X_n \sim N(\frac{1}{n^2}, \frac{1}{n^2}), \forall n$. Then [1]
 - (a) $\sum_{n} X_n$ converges almost surely.
 - (b) $\sum_{n} X_{n}$ converges only on a set A with $0 < \mathbb{P}(A) < 1$.
 - (c) $\sum_{n} X_n$ diverges almost surely.
 - (d) none of the above statements can be determined from the given information.
- Q2. Let X and Y be real valued random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then X and Y have the same distribution if [1]
 - (a) they have the same distribution function.
 - (b) $\mathbb{P}(|X Y| > \epsilon) = 0$ for some $\epsilon > 0$.
 - (c) $\mathbb{E}X$ and $\mathbb{E}Y$ exist and they are equal.
 - (d) they have the same characteristic function.
- Q3. Let Φ be the characteristic function of a random variable X. Identify which of the following are also characteristic functions of some other random variables. [1]
 - (a) $\Phi + 1$.
 - (b) $\overline{\Phi}$, the complex conjugate of Φ .
 - (c) $|\Phi|^2$.
 - (d) None of the above.
- Q4. Let $\{X_n\}$ be an i.i.d sequence of random variables on the same probability space and with distribution Poisson(3). Let $S_n := X_1 + \cdots + X_n, \forall n \ge 1$. Then [1]
 - (a) $\frac{S_n}{n} \xrightarrow{n \to \infty} 3$ in probability.
 - (b) $\frac{S_n}{n} \xrightarrow{n \to \infty} 9$ in probability.
 - (c) $\frac{S_n}{n} \xrightarrow{n \to \infty} 3$ a.s..
 - (d) $\frac{S_n}{n} \xrightarrow{n \to \infty} 9$ a.s..

Please turn over.

Date: April 6, 2019. Time: 14:00 - 14:50 hrs.

ROLL NO: NAME:

- Q5. Let μ denote the Lebesgue measure on $(\mathbb{R}^2, \mathbb{B}_{\mathbb{R}^2})$. Let X and Y be two real valued, independent, standard Gaussian random variables defined on some probability space. Let ν denote the joint law of $\binom{X}{Y}$. Then [1]
 - (a) ν is not absolutely continuous with respect to μ .
 - (b) ν is absolutely continuous with respect to μ and with the Radon-Nikodym density given by

$$\frac{d\nu}{d\mu}(x,y) = \frac{1}{2\pi} exp\left(-\frac{x^2+y^2}{2}\right), \forall x, y \in \mathbb{R}.$$

- (c) $\nu \ll \delta_{\begin{pmatrix} 0\\0 \end{pmatrix}}$.
- (d) None of the above.