MID SEMESTER EXAMINATION (2019-20 EVEN), PROBABILITY THEORY (MTH309A) TOTAL MARKS: 32, MAXIMUM YOU CAN SCORE: 30

ROLL NO: NAME:

Instructions:

- (1) Illegible answers will be taken as incorrect.
- (2) You may refer to your own class notes and use results proved in class. Searching in books/internet is not allowed. Mobiles must be switched off during the examination.
- (3) At the end of the exam, return the question paper along with your answer-script.
- (4) (Ω, \mathcal{F}) denotes some arbitrary but fixed measurable space.

1. Section A

<u>Question</u> 1. This question consists of Multiple Select Questions. The number of correct option(s) can be one or more than one. Put a tick (\checkmark) beside only the correct options to get credit. <u>Do not write in the answer-script.</u> Make sure to return the question paper along with your answer-script at the end of the exam. You get no credit for rough work. No partial credits will be awarded.

- (I) The statement 'the set of irrational numbers is a Borel subset of \mathbb{R} ' is
 - $\checkmark(a)$ True. (b) False.
- (II) Given $A_1, A_2, \dots \in \mathcal{F}$, which of the following sets are also in \mathcal{F} ?

$$\checkmark(a) \ A_1 \triangle A_2 := (A_1 \setminus A_2) \cup (A_2 \setminus A_1). \checkmark(b) \ A_1 \setminus A_2. \quad (c) \ A_1 \times A_2. \checkmark(d) \lim_{n \to \infty} \sup A_n.$$

- (III) Let $f, g: (\mathbb{R}, \mathbb{B}_{\mathbb{R}}) \to (\mathbb{R}, \mathbb{B}_{\mathbb{R}})$ be two simple functions. Consider the function $h:=\max\{f,g\}$. Then [2]
 - (a) for all simple functions f, there exists a simple function g, such that h is not a simple function.
 - \checkmark (b) h must be a simple function for all such f and g.
 - (c) h is not a simple function for all such f and q.
 - (d) none of the above statements are true.
- (IV) Let \mathbb{P} be a probability measure on \mathcal{F} and let $\{A_n\}$ be a sequence of sets in \mathcal{F} such that $\mathbb{P}(A_n) = 1, \forall n$. Then $\mathbb{P}(\bigcap_{n=1}^{\infty} A_n)$ equals

(a) 0. (b)
$$\frac{1}{2}$$
. \checkmark (c) 1. (d) can be any number in (0, 1).

(V) Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := \exp\left(-\frac{|x|}{2}\right), x \in \mathbb{R}$. Then the statement 'the function f can be uniformly approximated by simple functions' is

$$\checkmark$$
(a) True. (b) False.

Date: February 20, 2020. Time: 8:00 - 10:00 hrs. Venue: L10-L11 OROS.

- (VI) Consider the function $f(x) = x^3, x \in \mathbb{R}$ and the measure $\mu = \frac{1}{2}\delta_{-1} + \frac{1}{3}\delta_0 + \frac{1}{6}\delta_1$ on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$. Then [2] \checkmark (a) f is integrable with respect to the measure μ .
 - (b) $\int_{\mathbb{R}} |f(x)| d\mu(x) = \infty.$
 - $\checkmark(c) \int_{\mathbb{R}} f(x) d\mu(x) = -\frac{1}{3}.$
 - (d) $\int_{\mathbb{R}} |f(x)| d\mu(x) = 1$.

2. Section B

Instructions: Answer these questions in your answer-script and write answers to sub-parts consecutively.

Justify your answers.

Question 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Fix $A \in \mathcal{F}$ with $A \neq \emptyset$. Consider the class of sets

$$\mathcal{D} := \{ B \in \mathcal{F} : \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \}.$$

Is \mathcal{D} non-empty? Is it closed under complimentation? Is it a Monotone class?

[1+1+3]

Hints: Since $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$, we have $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for $B = \emptyset$, Ω . Hence $\phi, \Omega \in \mathcal{D}$ and \mathcal{D} is non-empty.

If $B \in \mathcal{D}$, then $\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B) = \mathbb{P}(A)[1 - \mathbb{P}(B)] = \mathbb{P}(A)\mathbb{P}(B^c)$. Hence $B^c \in \mathcal{D}$ and hence \mathcal{D} is closed under complimentation.

If $\{B_n\}$ be an increasing sequence of sets in \mathcal{D} , then using the continuity from below of \mathbb{P} , we have

$$\mathbb{P}(A \cap \left(\bigcup_{n} B_{n}\right)) = \lim_{n} \mathbb{P}(A \cap B_{n}) = \mathbb{P}(A) \lim_{n} \mathbb{P}(B_{n}) = \mathbb{P}(A) \mathbb{P}\left(\bigcup_{n} B_{n}\right).$$

Hence $\bigcup_n B_n \in \mathcal{D}$ and \mathcal{D} is closed under countable increasing unions.

To show closure under countable decreasing intersections, either use continuity from above of \mathbb{P} or use a combination of closure under countable increasing unions and complimentation.

Hence \mathcal{D} is a Monotone class.

- Question 3. (a) Let μ and ν be two probability measures on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$. Let F_{μ} and F_{ν} denote the corresponding distribution functions. If $F_{\mu}(x) = F_{\nu}(x), \forall x \in \mathbb{R}$, it is necessary that $\mu = \nu$? [3]
 - (b) Let X be a real valued random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Fix $x \in \mathbb{R}$ and define the random variable $Y(\omega) := 1_{(X \leq x)}(\omega), \forall \omega \in \Omega$. Find the law of Y. [2]

Hints:(a) (Proved in class) Recall that $\mathcal{D} := \{A \in \mathbb{B}_{\mathbb{R}} : \mu(A) = \nu(A)\}$ is a Monotone class.

Hypothesis implies $(-\infty, x] \in \mathcal{D}, \forall x \in \mathbb{R}$. Check that $(a, b] \in \mathcal{D}$ for all $a, b \in \mathbb{R}, a < b$. Check that finite disjoint unions of (a, b] are also in \mathcal{D} . But finite disjoint unions of (a, b] is a field and generates $\mathbb{B}_{\mathbb{R}}$. By the Monotone class Theorem $\mathcal{D} = \mathbb{B}_{\mathbb{R}}$ and hence $\mu = \nu$.

(b) Consider the set $A := (X \le x) = \{\omega \in \Omega : X(\omega) \le x\}$. Since X is a random variable, $A \in \mathcal{F}$. Moreover, $Y = 1_A$.

Then for any $B \in \mathbb{B}_{\mathbb{R}}$,

$$Y^{-1}(B) = \begin{cases} \emptyset, & \text{if } 0, 1 \notin B, \\ A, & \text{if } 0 \notin B, 1 \in B, \\ A^c, & \text{if } 0 \in B, 1 \notin B, \\ \Omega, & \text{if } 0, 1 \in B. \end{cases}$$

Now compute $\mathbb{P} \circ Y^{-1}$.

<u>Question</u> 4. Let $f:(\Omega,\mathcal{F})\to(\mathbb{R},\mathbb{B}_{\mathbb{R}})$ be a measurable function and let μ be a σ -finite measure on (Ω,\mathcal{F}) . Recall that f^+ and f^- denote the positive and negative parts of f respectively.

- (a) Define $\nu^+(A) := \int_A f^+ d\mu, \forall A \in \mathcal{F} \text{ and } \nu^-(A) := \int_A f^- d\mu, \forall A \in \mathcal{F}.$ Are ν^+ and $\nu^ \sigma$ -finite measures on (Ω, \mathcal{F}) ?
- (b) Suppose f is integrable with respect to the measure μ . Are ν^+ and ν^- finite measures on (Ω, \mathcal{F}) ? [1]
- (c) Suppose f is integrable with respect to the measure μ . Consider the set function $\nu(A) := \nu^+(A) \nu^-(A), \forall A \in \mathcal{F}$. Is the domain of ν the σ -field \mathcal{F} ? (i.e., is ν defined for all sets $A \in \mathcal{F}$?). Is ν countably additive on its domain, i.e. given a sequence of pairwise disjoint sets $\{A_n\}$ from its domain, is $\nu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \nu(A_n)$? [0.5 + 1.5]

Hints:(a) (Proved in class) Since f^+ and f^- are non-negative measurable functions, ν^+ and ν^- are measures. If μ is σ -finite, let $\{\Omega_n\}$ be a sequence in \mathcal{F} such that $\mu(\Omega_n) < \infty, \forall n$ and $\Omega_n \uparrow \Omega$.

Consider the sets $(f^+ \le n) \cap \Omega_n$ and $(f^- \le n) \cap \Omega_n$ and prove the σ -finiteness of ν^+ and ν^- .

- (b) Given that $\nu^+(\Omega) = \int_{\Omega} f^+ d\mu < \infty$ and $\nu^-(\Omega) = \int_{\Omega} f^- d\mu < \infty$, since f is integrable with respect to the measure μ . Hence ν^+ and ν^- are finite measures.
 - (c) By part (b), $\nu^+(A) < \infty$ and $\nu^-(A) < \infty$ for all $A \in \mathcal{F}$. Hence, ν is defined for all $A \in \mathcal{F}$.

Note that $\sum_{n} |\nu(A_n)| \leq \sum_{n} \nu^+(A_n) + \sum_{n} \nu^-(A_n) \leq \nu^+(\Omega) + \nu^-(\Omega) < \infty$, i.e. the series $\sum_{n} \nu(A_n)$ is absolutely convergent. Therefore,

$$\nu\left(\bigcup_{n=1}^{\infty}A_n\right) = \nu^+\left(\bigcup_{n=1}^{\infty}A_n\right) - \nu^-\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\nu^+(A_n) - \sum_{n=1}^{\infty}\nu^-(A_n) = \sum_{n=1}^{\infty}\nu(A_n).$$

<u>Question</u> 5. Let X_1, X_2, \cdots be a sequence of real valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- (a) Suppose $\lim_{n\to\infty} X_n(\omega)$ exists for all $\omega\in\Omega$. Is the function $X(\omega):=\lim_{n\to\infty} X_n(\omega), \forall \omega\in\Omega$ a random variable on the space $(\Omega,\mathcal{F},\mathbb{P})$?
- (b) Suppose that $|X_n(\omega)| \leq \text{(your roll number)}, \forall n, \omega. \text{ Is } X, \text{ as defined in part (a), integrable with respect to the measure } \mathbb{P}$? What can you say about $\lim_{n\to\infty} \mathbb{E}((X_n-X)^3)$? [1 + 3]

Hints:(a) (Proved in class) Limit of a sequence of measurable functions is measurable. Here X is the limit of measurable functions on a probability space and hence is a random variable.

(b) Suppose M be your roll number. Check that $|X(\omega)| \leq M, \forall \omega$. Then $\int_{\Omega} |X(\omega)| d\mathbb{P}(\omega) \leq \int_{\Omega} M d\mathbb{P}(\omega) \leq M\mathbb{P}(\Omega) = M < \infty$. Hence X is integrable.

Consider the random variables $Y_n := (X_n - X)^3$. Then the sequence $\{Y_n\}$ converges to 0 pointwise and $|Y_n| \le |X_n - X|^3 \le (2M)^3, \forall n$, i.e. uniformly bounded. Check that DCT is applicable for the sequence.

Apply DCT to conclude $\lim_{n\to\infty} \mathbb{E}((X_n - X)^3) = \lim_{n\to\infty} \mathbb{E}Y_n = \mathbb{E}\lim_{n\to\infty} Y_n = 0$.