MID SEMESTER EXAMINATION (2019-20 EVEN), PROBABILITY THEORY (MTH309A)

 TOTAL MARKS: 32, MAXIMUM YOU CAN SCORE: 30ROLL NO:
NAME:

Instructions:
(1) Illegible answers will be taken as incorrect.
(2) You may refer to your own class notes and use results proved in class. Searching in books/internet is not allowed. Mobiles must be switched off during the examination.
(3) At the end of the exam, return the question paper along with your answer-script.
(4) (Ω, \mathcal{F}) denotes some arbitrary but fixed measurable space.

1. Section A

Question 1. This question consists of Multiple Select Questions. The number of correct option(s) can be one or more than one. Put a tick (\checkmark) beside only the correct options to get credit. Do not write in the answer-script. Make sure to return the question paper along with your answer-script at the end of the exam. You get no credit for rough work. No partial credits will be awarded.
(I) The statement 'the set of irrational numbers is a Borel subset of \mathbb{R} ' is
(a) True. (b) False.
(II) Given $A_{1}, A_{2}, \cdots \in \mathcal{F}$, which of the following sets are also in \mathcal{F} ?

$$
\begin{equation*}
\text { (a) } A_{1} \triangle A_{2}:=\left(A_{1} \backslash A_{2}\right) \cup\left(A_{2} \backslash A_{1}\right) . \quad \text { (b) } A_{1} \backslash A_{2} \quad \text { (c) } A_{1} \times A_{2} \quad \text { (d) } \limsup _{n \rightarrow \infty} A_{n} \tag{2}
\end{equation*}
$$

(III) Let $f, g:\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right) \rightarrow\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$ be two simple functions. Consider the function $h:=\max \{f, g\}$. Then [2]
(a) for all simple functions f, there exists a simple function g, such that h is not a simple function.
(b) h must be a simple function for all such f and g.
(c) h is not a simple function for all such f and g.
(d) none of the above statements are true.
(IV) Let \mathbb{P} be a probability measure on \mathcal{F} and let $\left\{A_{n}\right\}$ be a sequence of sets in \mathcal{F} such that $\mathbb{P}\left(A_{n}\right)=1, \forall n$. Then $\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)$ equals
(a) 0.
(b) $\frac{1}{2}$.
(c) 1 .
(d) can be any number in $(0,1)$.
(V) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x):=\exp \left(-\frac{|x|}{2}\right), x \in \mathbb{R}$. Then the statement 'the function f can be uniformly approximated by simple functions' is

> (a) True. (b) False.

[^0](VI) Consider the function $f(x)=x^{3}, x \in \mathbb{R}$ and the measure $\mu=\frac{1}{2} \delta_{-1}+\frac{1}{3} \delta_{0}+\frac{1}{6} \delta_{1}$ on $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$. Then
(a) f is integrable with respect to the measure μ.
(b) $\int_{\mathbb{R}}|f(x)| d \mu(x)=\infty$.
(c) $\int_{\mathbb{R}} f(x) d \mu(x)=-\frac{1}{3}$.
(d) $\int_{\mathbb{R}}|f(x)| d \mu(x)=1$.

2. Section B

Instructions: Answer these questions in your answer-script and write answers to sub-parts consecutively. Justify your answers.

Question 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Fix $A \in \mathcal{F}$ with $A \neq \emptyset$. Consider the class of sets

$$
\mathcal{D}:=\{B \in \mathcal{F}: \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)\}
$$

Is \mathcal{D} non-empty? Is it closed under complimentation? Is it a Monotone class?

$$
[1+1+3]
$$

Question 3. (a) Let μ and ν be two probability measures on $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$. Let F_{μ} and F_{ν} denote the corresponding distribution functions. If $F_{\mu}(x)=F_{\nu}(x), \forall x \in \mathbb{R}$, it is necessary that $\mu=\nu$?
(b) Let X be a real valued random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Fix $x \in \mathbb{R}$ and define the random variable $Y(\omega):=1_{(X \leq x)}(\omega), \forall \omega \in \Omega$. Find the law of Y.

Question 4. Let $f:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$ be a measurable function and let μ be a σ-finite measure on (Ω, \mathcal{F}). Recall that f^{+}and f^{-}denote the positive and negative parts of f respectively.
(a) Define $\nu^{+}(A):=\int_{A} f^{+} d \mu, \forall A \in \mathcal{F}$ and $\nu^{-}(A):=\int_{A} f^{-} d \mu, \forall A \in \mathcal{F}$. Are ν^{+}and $\nu^{-} \sigma$-finite measures on (Ω, \mathcal{F}) ?
(b) Suppose f is integrable with respect to the measure μ. Are ν^{+}and ν^{-}finite measures on (Ω, \mathcal{F}) ? [1]
(c) Suppose f is integrable with respect to the measure μ. Consider the set function $\nu(A):=\nu^{+}(A)-$ $\nu^{-}(A), \forall A \in \mathcal{F}$. Is the domain of ν the σ-field \mathcal{F} ? (i.e., is ν defined for all sets $A \in \mathcal{F}$?). Is ν countably additive on its domain, i.e. given a sequence of pairwise disjoint sets $\left\{A_{n}\right\}$ from its domain, is $\nu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \nu\left(A_{n}\right)$?

Question 5. Let X_{1}, X_{2}, \cdots be a sequence of real valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
(a) Suppose $\lim _{n \rightarrow \infty} X_{n}(\omega)$ exists for all $\omega \in \Omega$. Is the function $X(\omega):=\lim _{n \rightarrow \infty} X_{n}(\omega), \forall \omega \in \Omega$ a random variable on the space $(\Omega, \mathcal{F}, \mathbb{P})$?
(b) Suppose that $\left|X_{n}(\omega)\right| \leq$ (your roll number), $\forall n, \omega$. Is X, as defined in part (a), integrable with respect to the measure \mathbb{P} ? What can you say about $\lim _{n \rightarrow \infty} \mathbb{E}\left(\left(X_{n}-X\right)^{3}\right)$? $\quad[1+3]$

[^0]: Date: February 20, 2020. Time: 8:00-10:00 hrs. Venue: L10-L11 OROS.

