MID SEMESTER EXAMINATION (2019-20 EVEN), PROBABILITY THEORY (MTH309A) TOTAL MARKS: 32, MAXIMUM YOU CAN SCORE: 30

ROLL NO: NAME:

Instructions:

- (1) Illegible answers will be taken as incorrect.
- (2) You may refer to your own class notes and use results proved in class. Searching in books/internet is not allowed. Mobiles must be switched off during the examination.
- (3) At the end of the exam, return the question paper along with your answer-script.
- (4) (Ω, \mathcal{F}) denotes some arbitrary but fixed measurable space.

1. Section A

<u>Question</u> 1. This question consists of Multiple Select Questions. The number of correct option(s) can be one or more than one. Put a tick (\checkmark) beside only the correct options to get credit. Do not write in the answer-script. Make sure to return the question paper along with your answer-script at the end of the exam. You get no credit for rough work. No partial credits will be awarded.

(I) The statement 'the set of irrational numbers is a Borel subset of \mathbb{R} ' is [2]

$$(a)$$
 True. (b) False.

(II) Given $A_1, A_2, \dots \in \mathcal{F}$, which of the following sets are also in \mathcal{F} ?

(a)
$$A_1 \triangle A_2 := (A_1 \setminus A_2) \cup (A_2 \setminus A_1)$$
. (b) $A_1 \setminus A_2$. (c) $A_1 \times A_2$. (d) $\limsup_{n \to \infty} A_n$

(III) Let $f, g: (\mathbb{R}, \mathbb{B}_{\mathbb{R}}) \to (\mathbb{R}, \mathbb{B}_{\mathbb{R}})$ be two simple functions. Consider the function $h := \max\{f, g\}$. Then [2]

(a) for all simple functions f, there exists a simple function g, such that h is not a simple function.

[2]

- (b) h must be a simple function for all such f and g.
- (c) h is not a simple function for all such f and g.
- (d) none of the above statements are true.
- (IV) Let \mathbb{P} be a probability measure on \mathcal{F} and let $\{A_n\}$ be a sequence of sets in \mathcal{F} such that $\mathbb{P}(A_n) = 1, \forall n$. Then $\mathbb{P}(\bigcap_{n=1}^{\infty} A_n)$ equals [2]

(a) 0. (b) $\frac{1}{2}$. (c) 1. (d) can be any number in (0, 1).

(V) Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := \exp\left(-\frac{|x|}{2}\right), x \in \mathbb{R}$. Then the statement 'the function f can be uniformly approximated by simple functions' is [2]

(a) True. (b) False.

Date: February 20, 2020. Time: 8:00 - 10:00 hrs. Venue: L10-L11 OROS.

- (a) j is mographe with respect to the inc
- (b) $\int_{\mathbb{R}} |f(x)| d\mu(x) = \infty.$
- (c) $\int_{\mathbb{R}} f(x) d\mu(x) = -\frac{1}{3}.$
- (d) $\int_{\mathbb{R}} |f(x)| d\mu(x) = 1.$

2. Section B

Instructions: Answer these questions in your answer-script and write answers to sub-parts consecutively. Justify your answers.

Question 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Fix $A \in \mathcal{F}$ with $A \neq \emptyset$. Consider the class of sets

$$\mathcal{D} := \{ B \in \mathcal{F} : \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \}.$$

Is \mathcal{D} non-empty? Is it closed under complimentation? Is it a Monotone class? [1 + 1 + 3]

- <u>Question</u> 3. (a) Let μ and ν be two probability measures on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$. Let F_{μ} and F_{ν} denote the corresponding distribution functions. If $F_{\mu}(x) = F_{\nu}(x), \forall x \in \mathbb{R}$, it is necessary that $\mu = \nu$? [3]
 - (b) Let X be a real valued random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Fix $x \in \mathbb{R}$ and define the random variable $Y(\omega) := 1_{(X \leq x)}(\omega), \forall \omega \in \Omega$. Find the law of Y. [2]

<u>Question</u> 4. Let $f : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathbb{B}_{\mathbb{R}})$ be a measurable function and let μ be a σ -finite measure on (Ω, \mathcal{F}) . Recall that f^+ and f^- denote the positive and negative parts of f respectively.

- (a) Define $\nu^+(A) := \int_A f^+ d\mu, \forall A \in \mathcal{F} \text{ and } \nu^-(A) := \int_A f^- d\mu, \forall A \in \mathcal{F}.$ Are ν^+ and $\nu^- \sigma$ -finite measures on (Ω, \mathcal{F}) ? [2]
- (b) Suppose f is integrable with respect to the measure μ . Are ν^+ and ν^- finite measures on (Ω, \mathcal{F}) ? [1]
- (c) Suppose f is integrable with respect to the measure μ . Consider the set function $\nu(A) := \nu^+(A) \nu^-(A), \forall A \in \mathcal{F}$. Is the domain of ν the σ -field \mathcal{F} ? (i.e., is ν defined for all sets $A \in \mathcal{F}$?). Is ν countably additive on its domain, i.e. given a sequence of pairwise disjoint sets $\{A_n\}$ from its domain, is $\nu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \nu(A_n)$? [0.5 + 1.5]
- Question 5. Let X_1, X_2, \cdots be a sequence of real valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (a) Suppose $\lim_{n\to\infty} X_n(\omega)$ exists for all $\omega \in \Omega$. Is the function $X(\omega) := \lim_{n\to\infty} X_n(\omega), \forall \omega \in \Omega$ a random variable on the space $(\Omega, \mathcal{F}, \mathbb{P})$? [1]
 - (b) Suppose that $|X_n(\omega)| \leq (\text{your roll number}), \forall n, \omega$. Is X, as defined in part (a), integrable with respect to the measure \mathbb{P} ? What can you say about $\lim_{n\to\infty} \mathbb{E}((X_n X)^3)$? [1 + 3]