MTH309A PRACTICE PROBLEMS SET 1

AshBk = Probability & Measure Theory (2nd Edition), Robert B. Ash and Catherine A. Doléans-Dade. Elsevier.

ChungBk = A Course in Probability Theory (3rd Edition), Kai Lai Chung. Academic Press (Elsevier).

Question 1. AshBk [pp. 10-12] Problems 1, 3, 4, 5, 8, 9, 12

Question 2. ChungBk [pp. 19-21] Exercises 4, 12 [Terminology: B.F. = Borel Field = σ -field]

<u>Question</u> 3. In class, we have listed collections of different generating sets for the Borel σ -field on \mathbb{R} and have verified for some of the collections that they do generate the same σ -field. Verify for the rest in the list for which the verification was not done in class.

Question 4. Suppose that a collection \mathcal{F} of subsets of Ω has the following properties.

(1) $\emptyset \in \mathcal{F}$.

(2) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

(3) If $A \in \mathcal{F}$, then A^c is a finite disjoint union of members of \mathcal{F} .

Consider another collection C consisting of finite disjoint union of members of \mathcal{F} . Show that C is a field of subsets of Ω .

Remarks: (not included in the exercise) The collection of left-open right-closed intervals in \mathbb{R} is an example of such an \mathcal{F} . Recall that we consider intervals of the form $(a, \infty), a \in \mathbb{R}$ to be left-open right-closed. This collection \mathcal{C} was mentioned in the class as an example of a field, but not a σ -field.

<u>Question</u> 5. Let $f : \Omega \to \Omega'$ be a function and let \mathcal{F} be a σ -field in Ω' . Show that $f^{-1}(\mathcal{F}) := \{f^{-1}(A) : A \in \mathcal{F}\}$ is a σ -field in Ω .

Question 6. Let $f: \Omega \to \Omega'$ be a function and let \mathcal{F} be a collection of subsets of Ω' . Show that

$$\sigma(f^{-1}(\mathcal{F})) = f^{-1}(\sigma(\mathcal{F})),$$

where $f^{-1}(A)$ denotes the pre-image of $A \subset \Omega'$, $f^{-1}(\mathcal{F}) := \{f^{-1}(A) : A \in \mathcal{F}\}$ and $f^{-1}(\sigma(\mathcal{F})) := \{f^{-1}(A) : A \in \sigma(\mathcal{F})\}$. (Hint: Use the principle of good sets.)

<u>Question</u> 7. Say that a σ -field is countably generated (or separable) if it can be generated by some countable collection of sets. Show that the Borel σ -field $\mathcal{B}_{\mathbb{R}}$ on \mathbb{R} is countably generated.

Question 8. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space. Fix $A \in \mathcal{F}$. Show that

$$\mathcal{C} := \{B \in \mathcal{F} : \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)\}$$

is a Monotone class.

<u>Question</u> 9. Suppose that \mathcal{F} is a collection of subsets of Ω with the following properties: $\Omega \in \mathcal{F}$ and $A, B \in \mathcal{F}$ implies $A \setminus B := A \cap B^c \in \mathcal{F}$. Show that \mathcal{F} is a field.

Question 10. Find examples of Monotone classes which are not σ -fields.