MTH309A PRACTICE PROBLEMS SET 5

AshBk $=$ Probability \& Measure Theory (2nd Edition), Robert B. Ash and Catherine A. DoléansDade. Elsevier.

ChungBk $=$ A Course in Probability Theory (3rd Edition), Kai Lai Chung. Academic Press (Elsevier).

Question 1. AshBk [pp. 54-55] Problems 2, 4-7; [pp. 58-59] Problems 1, 4; [pp. 94-95] Problems 1-2, 4-6

Question 2. ChungBk [pp. 51] Exercises 12-14
Question 3. Let λ denote the Lebesgue measure on $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$. For any Borel set A and $x \in \mathbb{R}$, define $\overline{A+x:=}\{a+x: a \in A\}$. Show that λ is translation invariant, i.e.

$$
\lambda(A)=\lambda(A+x), \forall x \in \mathbb{R}, A \in \mathbb{B}_{\mathbb{R}}
$$

Note: Also check Q4, set 4.
 $\overline{{ }^{\top} \int_{\mathbb{R}} f(x)} d x$ ' and ' $\int_{\mathbb{R}} f(x-a) d x$ ' with respect to the Lebesgue measure. If one integral exists, show the existence of the other. In this case, show that the two integrals are actually equal.

Question 5. Let f, g be integrable functions on $(\Omega, \mathcal{F}, \mu)$ such that

$$
\int_{A} f d \mu \leq \int_{A} g d \mu, \forall A \in \mathcal{F}
$$

Show that $f \leq g, \mu$-a.e..
Question 6. Fix $a, b \in \mathbb{R}$ with $a<b$. Suppose that there exist functions $f:(a, b) \times \Omega \rightarrow \mathbb{R}$ and $\overline{g: \Omega \rightarrow \mathbb{R}}$ such that
(1) $\omega \in \Omega \mapsto f(t, \omega)$ is μ-integrable for every fixed $t \in(a, b)$,
(2) $t \in(a, b) \mapsto f(t, \omega)$ is continuous for every fixed $\omega \in \Omega$,
(3) $g \geq 0$ and μ-integrable,
(4) $|f(t, \omega)| \leq g(\omega), \forall t, \omega$.

Then show that the function $h:(a, b) \rightarrow \mathbb{R}$ defined by

$$
h(t):=\int_{\Omega} f(t, \omega) d \mu(\omega)
$$

is continuous.
 $\overline{g: \Omega \rightarrow \mathbb{R}}$ such that
(1) $\omega \in \Omega \mapsto f(t, \omega)$ is μ-integrable for every fixed $t \in(a, b)$,
(2) $t \in(a, b) \mapsto f(t, \omega)$ is differentiable (in t) for every fixed $\omega \in \Omega$,
(3) $g \geq 0$ and μ-integrable,
(4) $\left|\frac{\partial}{\partial t} f(t, \omega)\right| \leq g(\omega), \forall t, \omega$.

Then show that the function $h:(a, b) \rightarrow \mathbb{R}$ defined by

$$
h(t):=\int_{\Omega} f(t, \omega) d \mu(\omega)
$$

is differentiable with $h^{\prime}(t)=\int_{\Omega} \frac{\partial}{\partial t} f(t, \omega) d \mu(\omega)$.
Question 8. (Hölder's inequality) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Fix $p, q \in(1, \infty)$ with $p^{-1}+$ $\overline{q^{-1}=1}$. Then for any $f \in \mathcal{L}^{p}(\mu), g \in \mathcal{L}^{q}(\mu)$, we have $f g \in \mathcal{L}^{1}(\mu)$ and

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

