QUIZ 1, MTH309A

TOTAL MARKS: 10

ROLL NO:
NAME:

Instructions:
(1) Illegible answers will be taken as incorrect.
(2) You get no credit for rough work. No extra pages will be supplied.
(3) You may refer to your own class notes. Searching in books/internet is not allowed. Mobiles must be switched off during the quiz.
(4) (Ω, \mathcal{F}) stands for an arbitrary measurable space.

Multiple Choice Questions [Only one option is correct. Put a tick (\checkmark) beside the correct option.]

(a) Yes.
(b) No.
(c) can not be determined from the given information.

Question 2. We say that a collection \mathcal{D} of subsets of Ω is a π system, if it is closed under finite intersections, i.e. given $A, B \in \mathcal{D}$ implies $A \cap B \in \mathcal{D}$. Is the collection $\mathcal{D}:=\{(-\infty, a]:-\infty<a<\infty\}$ of subsets of \mathbb{R} a π system? [1]
(a) Yes.
(b) No.
(c) can not be determined from the given information.

Question 3. We say that a real valued set function μ defined on \mathcal{F} is 'continuous from above at the empty set \emptyset ', if for all decreasing sequence of sets $\left\{A_{n}\right\}$ in \mathcal{F} with $A_{n} \downarrow \emptyset$, we have $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$. If μ is a σ-finite measure, is it 'continuous from above at the empty set \emptyset '?
(a) Yes.
(b) No.
(c) can not be determined from the given information.

Question 4. Given a probability measure μ on (Ω, \mathcal{F}), exactly one of the following statements is false. Identify. [1]
(a) $|\mu(A)-\mu(B)| \leq \mu(A \backslash B)+\mu(B \backslash A)$, for all $A, B \in \mathcal{F}$.
(b) For all $A \in \mathcal{F}, \lim _{n \rightarrow \infty}(\mu(A))^{n}$ is either 0 or 1 .
(c) $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ is necessarily bounded above by 1 , for all sequences $\left\{A_{n}\right\}$ in \mathcal{F}.
(d) Fix $x \in \Omega$. Then $\left\{A \in \mathcal{F}: \mu(A)=\delta_{x}(A)\right\}$ is a Monotone class.
P.T.O.

Date: January 29, 2020. Time: 11:00-11:50 hrs.

Multiple Select Questions [Number of correct option(s) can be one or more than one. Put a tick (\checkmark) beside only the correct option(s) to get credit. No partial credits will be awarded.]

Question 5. Recall the field \mathcal{C} containing finite disjoint unions of left-open right-closed intervals on \mathbb{R}. Suppose μ_{1} and μ_{2} are two measures on \mathcal{C} with the property that $\mu_{1}((a, b])=\mu_{2}((a, b])=b-a, \forall-\infty \leq a<b \leq \infty$. Then identify the correct options.
(a) μ_{1} and μ_{2} can be finite measures.
(b) μ_{1} and μ_{2} must be σ-finite measures.
(c) Any one of μ_{1} and μ_{2} can have more than one extension to $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$ and it is also possible to have no such extensions as well.
(d) Both μ_{1} and μ_{2} must extend to the same measure on $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$.
 numbers.
(a) $(a, b), \forall a<b, a, b \in \mathbb{R} \backslash \mathbb{Q}$.
(b) $(-\infty, a], \forall a \in \mathbb{Q}$.
(c) $(a, b] \cup[c, d), \forall a<b<c<d, a, b, c, d \in \mathbb{R}$.
(d) all compact sets K such that there exists $a, b \in \mathbb{R}$ with $K \subseteq[a, b], a<b \leq a+1$.

(a) If f_{1} and f_{2} are Borel measurable, then so is $f_{1}+f_{2}$.
(b) If f_{1} and f_{2} are Borel measurable, then $f_{1}+f_{2}$ is a simple function.
(c) If f_{1} and f_{2} are simple functions, then so is $f_{1}+f_{2}$.
(d) If f_{1} and f_{2} are simple functions, then $f_{1}+f_{2}$ is Borel measurable.

