QUIZ 1, MTH309A TOTAL MARKS: 10

ROLL NO: NAME:

Instructions:

- (1) Illegible answers will be taken as incorrect.
- (2) You get no credit for rough work. No extra pages will be supplied.
- (3) You may refer to your own class notes. Searching in books/internet is not allowed. Mobiles must be switched off during the quiz.
- (4) (Ω, \mathcal{F}) stands for an arbitrary measurable space.

Multiple Choice Questions [Only one option is correct. Put a tick (\checkmark) beside the correct option.]

Question 1. Let $\{A_n\}$ be a sequence in \mathcal{F} . Is the function 1_A , where $A = \liminf_{n \to \infty} A_n$, Borel measurable? [1]

(a) Yes. (b) No. (c) can not be determined from the given information.

<u>Question</u> 2. We say that a collection \mathcal{D} of subsets of Ω is a π system, if it is closed under finite intersections, i.e. given $A, B \in \mathcal{D}$ implies $A \cap B \in \mathcal{D}$. Is the collection $\mathcal{D} := \{(-\infty, a] : -\infty < a < \infty\}$ of subsets of \mathbb{R} a π system? [1]

(a) Yes. (b) No. (c) can not be determined from the given information.

<u>Question</u> 3. We say that a real valued set function μ defined on \mathcal{F} is 'continuous from above at the empty set \emptyset ', if for all decreasing sequence of sets $\{A_n\}$ in \mathcal{F} with $A_n \downarrow \emptyset$, we have $\lim_{n \to \infty} \mu(A_n) = 0$. If μ is a σ -finite measure, is it 'continuous from above at the empty set \emptyset '? [1]

(a) Yes. (b) No. (c) can not be determined from the given information.

Question 4. Given a probability measure μ on (Ω, \mathcal{F}) , exactly one of the following statements is <u>false</u>. Identify, [1]

- (a) $|\mu(A) \mu(B)| \le \mu(A \setminus B) + \mu(B \setminus A)$, for all $A, B \in \mathcal{F}$.
- (b) For all $A \in \mathcal{F}$, $\lim_{n \to \infty} (\mu(A))^n$ is either 0 or 1.
- (c) $\sum_{n=1}^{\infty} \mu(A_n)$ is necessarily bounded above by 1, for all sequences $\{A_n\}$ in \mathcal{F} .
- (d) Fix $x \in \Omega$. Then $\{A \in \mathcal{F} : \mu(A) = \delta_x(A)\}$ is a Monotone class.

P.T.O.

Date: January 29, 2020. Time: 11:00 - 11:50 hrs.

<u>Question</u> 5. Recall the field C containing finite disjoint unions of left-open right-closed intervals on \mathbb{R} . Suppose μ_1 and μ_2 are two measures on C with the property that $\mu_1((a, b]) = \mu_2((a, b]) = b - a, \forall -\infty \le a < b \le \infty$. Then identify the correct options. [2]

- (a) μ_1 and μ_2 can be finite measures.
- (b) μ_1 and μ_2 must be σ -finite measures.
- (c) Any one of μ_1 and μ_2 can have more than one extension to $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$ and it is also possible to have no such extensions as well.
- (d) Both μ_1 and μ_2 must extend to the same measure on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$.

<u>Question</u> 6. Which of the following collections of sets generate Borel σ field on \mathbb{R} ? Here \mathbb{Q} denotes the set of rational numbers. [2]

- (a) $(a, b), \forall a < b, a, b \in \mathbb{R} \setminus \mathbb{Q}.$
- (b) $(-\infty, a], \forall a \in \mathbb{Q}.$
- (c) $(a, b] \cup [c, d), \forall a < b < c < d, a, b, c, d \in \mathbb{R}.$
- (d) all compact sets K such that there exists $a, b \in \mathbb{R}$ with $K \subseteq [a, b], a < b \leq a + 1$.

Question 7. Let $f_1, f_2: \Omega \to \mathbb{R}$ be two functions. Identify the correct options.

- (a) If f_1 and f_2 are Borel measurable, then so is $f_1 + f_2$.
- (b) If f_1 and f_2 are Borel measurable, then $f_1 + f_2$ is a simple function.
- (c) If f_1 and f_2 are simple functions, then so is $f_1 + f_2$.
- (d) If f_1 and f_2 are simple functions, then $f_1 + f_2$ is Borel measurable.

[2]