QUIZ 2, MTH309A TOTAL MARKS: 10

ROLL NO: NAME:

Instructions:

- (1) Illegible answers will be taken as incorrect.
- (2) You get no credit for rough work. No extra pages will be supplied.
- (3) You may refer to your own class notes. Searching in books/internet is not allowed. Mobiles must be switched off during the quiz.
- (4) $(\Omega, \mathcal{F}, \mathbb{P})$ stands for an arbitrary probability space.

Multiple Choice Questions [Only one option is correct. Put a tick (\checkmark) beside the correct option.]

Question 1. Let $\{A_n\}$ be a sequence in \mathcal{F} with $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$. Then the value of $\mathbb{P}(\liminf_n A_n)$ [1]

- (a) is 1.
- (b) is 0.
- (c) is $\frac{1}{2}$.
- (d) can not be determined from the given information.

<u>Question</u> 2. Let $A := [0,1] \cap \mathbb{Q}$, where \mathbb{Q} denotes the set of rationals in \mathbb{R} . Consider the function $f : [0,1] \to \mathbb{R}$ defined as $f(x) := 1_A(x)$. Then f [1]

- (a) is Riemann integrable as well as Lebesgue integrable.
- (b) is Riemann integrable, but not Lebesgue integrable.
- (c) is Lebesgue integrable, but not Riemann integrable.
- (d) is neither Riemann integrable, nor Lebesgue integrable.

<u>Question</u> 3. Let μ be a measure on (Ω, \mathcal{F}) and let $f \in \mathcal{L}^2(\mu)$. Then the set function $A \in \mathcal{F} \mapsto \int_A f^2 d\mu$ [1]

- (1) is countably additive, but not necessarily non-negative.
- (2) is non-negative, but not necessarily countably additive.
- (3) is a finite measure.
- (4) is an infinite measure.

Question 4. Let μ be a probability measure on $(\mathbb{R}, \mathbb{B}_{\mathbb{R}})$. Fix $t \in \mathbb{R}$. The function $x \in \mathbb{R} \mapsto e^{itx} \in \mathbb{C}$ is in $\mathcal{L}^p(\mu; \mathbb{C})$

[1]

- (a) only for p = 1.
- (b) only for p = 2.
- (c) for $p \in [1, \infty)$.
- (d) for no values of $p \in (0, \infty)$.

Date: March 4, 2020. Time: 11:00 - 11:50 hrs.

Multiple Select Questions [Number of correct option(s) can be one or more than one. Put a tick (\checkmark) beside only the correct option(s) to get credit. No partial credits will be awarded.]

<u>Question</u> 5. Let X be a real valued random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Which of the following condition(s) implies that $X \in \mathcal{L}^1(\mathbb{P})$? [2]

- (a) $\int_{\Omega} X^+ d\mathbb{P} < \infty$ and $\int_{\Omega} X^- d\mathbb{P} < \infty$.
- (b) There exists a constant C > 0 such that $\mathbb{P}(\{\omega : |X(\omega)| > C\}) = 0$.
- (c) $\mathbb{E}|X| < \infty$.
- (d) There exists a random variable Y such that $|X| \leq Y$ a.s. and $Y \in \mathcal{L}^1(\mathbb{P})$.

<u>Question</u> 6. Let $\{f_n\}$ be a sequence of simple functions on \mathbb{R} given by $f_n(x) := (2n+1)1_{A_n}(x), \forall x \in \mathbb{R}, n = 1, 2, \cdots$ where $A_n = (0, \frac{1}{n}]$. Let Leb denote the Lebesgue measure on \mathbb{R} . Then [2]

- (a) $\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dLeb(x)$ does not exist, but $\int_{-\infty}^{\infty} \lim_{n\to\infty} f_n(x) dLeb(x) = 0.$
- (b) $\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dLeb(x) = 0$, but $\int_{-\infty}^{\infty} \lim_{n\to\infty} f_n(x) dLeb(x)$ does not exist.
- (c) $\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dLeb(x) = \int_{-\infty}^{\infty} \lim_{n\to\infty} f_n(x) dLeb(x) = 0.$
- (d) $\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dLeb(x) = 2$, but $\int_{-\infty}^{\infty} \lim_{n\to\infty} f_n(x) dLeb(x) = 0$..

<u>Question</u> 7. Let f, g be two real valued Borel measurable functions on a measure space $(\Omega, \mathcal{F}, \mu)$. Let $(\Omega, \mathcal{F}_{\mu}, \bar{\mu})$ denote the completion of the given measure space. Identify the correct option(s). [2]

- (a) If $f = g \mu$ -a.e. and f is integrable, then g is integrable.
- (b) If f = 0 μ -a.e., then f = 0 $\bar{\mu}$ -a.e..
- (c) f is $\mathcal{F}_{\mu}/\mathbb{B}_{\mathbb{R}}$ measurable.
- (d) If $\int_{\Omega} f \, d\mu$ exists, then so does $\int_{\Omega} f \, d\bar{\mu}$ and $\int_{\Omega} f \, d\mu = \int_{\Omega} f \, d\bar{\mu}$.