END SEMESTER EXAMINATION (2019-20 ODD), BASIC PROBABILITY AND DISTRIBUTION THEORY (MTH431A) TOTAL MARKS: 46, MAXIMUM YOU CAN SCORE: 40

ROLL NO:
NAME:

Instructions:
(1) Illegible answers will be taken as incorrect.
(2) You may refer to your own class notes and use results proved in class. Searching in books/internet is not allowed. Mobiles must be switched off during the examination.
(3) At the end of the exam, return the question paper along with your answer-script.
(4) $\mathbb{N}=\{1,2, \cdots\}$ denotes the set of natural numbers. $(\Omega, \mathcal{F}, \mathbb{P})$ denotes some arbitrary but fixed probability space. Unless stated otherwise, all random variables and random vectors are assumed to be defined on this probability space.

1. Section A

Question 1. This question consists of MCQs with exactly one correct answer in each. Put a tick (\checkmark) beside the correct option. Do not write your answer in the answer-script. You get no credit for rough work.
(I) For any real valued random variable X with $\mathbb{E}|X|^{3}<\infty$, define the coefficient of skewness as

$$
\begin{equation*}
\frac{\mathbb{E}\left[(X-\mathbb{E} X)^{3}\right]}{\left(\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]\right)^{\frac{3}{2}}} \tag{3}
\end{equation*}
$$

The coefficient of skewness of Poisson(4) is given by
(a) 2^{-1}.
(b) 4^{-1}.
(c) 8^{-1}.
(d) 16 .
(II) Let X be a real valued random variable with $\mathbb{E} X^{2}<\infty$. Then the series ' $\sum_{n=1}^{\infty} \mathbb{P}(|X|>\sqrt{n})$ '
(a) converges.
(b) diverges to ∞.
(c) may converge or diverge for different X.
(III) For any $A \in \mathcal{F}$, consider the random variable

$$
1_{A}(\omega):=\left\{\begin{array}{l}
1, \text { if } \omega \in A \\
0, \text { otherwise }
\end{array}\right.
$$

For arbitrary $A, B \in \mathcal{F}$, consider the statement ' $\mathbb{E}\left[1_{A} \mid 1_{B}=1\right]=\mathbb{P}(A \mid B)$ '. This statement is
(a) false for all $A, B \in \mathcal{F}$ with $\mathbb{P}(B)>0$.

Date: November 18, 2019. Time: 9:00-12:00 hrs. Venue: L2 ERES.
(b) true for all $A, B \in \mathcal{F}$ with $\mathbb{P}(B)>0$.
(c) true only if $A=B=\Omega$.
(IV) Let $X \sim N\left(\mu, \sigma^{2}\right)$ with $\mathbb{E} X^{3}=0$. Then
(a) $\mu=0$.
(b) there are many possible values of μ, including 0 .
(c) there are many possible values of μ. However $\mu \neq 0$.
(d) there is not enough information to conclude about values of μ.
(V) Let X_{1}, X_{2}, \cdots be a sequence of independent Cauchy random variables with p.d.f. $f(x)=$ $\frac{1}{\pi} \frac{1}{1+x^{2}}, \forall x \in \mathbb{R}$. Define $Y_{1}:=X_{1}$ and $Y_{n}:=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$, for $n>1$. Then the statement ' Y_{1}, Y_{2}, \cdots are all identically distributed' is
(a) true. (b) false.
(VI) Fix $p_{1}, p_{2}, \cdots, p_{k}>0$ with $\sum_{i} p_{i}=1$. Let the random vector $\left(X_{1}, X_{2}, \cdots, X_{k-1}\right)^{t}$ follow a multinomial distribution with joint p.m.f. given by

$$
\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{k-1}=x_{k-1}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{k-1}!\left(n-\sum_{i=1}^{k-1} x_{i}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k-1}^{x_{k-1}} p_{k}^{n-\sum_{i=1}^{k-1} x_{i}},
$$

if $x_{1}+x_{2}+\cdots+x_{k-1} \leq n$ and 0 otherwise. For $1 \leq i, j \leq k-1$ and $i \neq j$, the Correlation coefficient between X_{i} and X_{j} is
(a) 0
(b) 1
(c) $\left[\frac{p_{i} p_{j}}{\left(1-p_{i}\right)\left(1-p_{j}\right)}\right]^{\frac{1}{2}}$
(d) $-\left[\frac{p_{i} p_{j}}{\left(1-p_{i}\right)\left(1-p_{j}\right)}\right]^{\frac{1}{2}}$.

Question 2. This question consists of MSQs with the number of correct options being 1, 2, 3 or 4. Put a tick (\checkmark) beside only the correct option(s) to get credit. Do not write your answer in the answer-script. No partial credits will be awarded. You get no credit for rough work.
(I) Fix $A \in \mathcal{F}$. Consider the collection of sets $\mathcal{C}:=\{B \in \mathcal{F}: \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)\}$. Then
(a) \mathcal{C} is non-empty.
(b) \mathcal{C} is closed under complementation.
(c) \mathcal{C} is closed under countable increasing unions.
(d) \mathcal{C} is closed under countable intersections.
(II) Let X and Y be independent discrete random variables. Further assume $X \sim \operatorname{Binomial}(n, p)$ for some integer $n \geq 1$ and $p \in(0,1)$. Define $Z:=1+X$. Which of the following are also random variables?
(a) $Y Z$
(b) $\frac{Y}{Z}$
(c) $\sqrt{Y Z}$
(d) $\min \{Y, Z\}$.
(III) Let X, Y be exchangable random variables. Then
(a) X and Y are independent and identically distributed.
(b) X and Y are identically distributed, but not necessarily independent.
(c) $X-Y$ and $Y-X$ are identically distributed.
(d) none of the above.
(IV) Let $X=\left(X_{1}, X_{2}, X_{3}\right)^{t}$ be a continuous random vector taking values in \mathbb{R}^{3}. Then the distribution of X is determined by
(a) the joint p.d.f. of X.
(b) the Characteristic function of X.
(c) the distribution function of X.
(d) all 2-dimensional marginal distributions, if the components X_{1}, X_{2}, X_{3} are independent.

2. Section B

Instructions: Answer these questions in your answer-script. You can use any result proved in class. Question 3. Let X_{1}, X_{2} and X_{3} be independent $\operatorname{Uniform}(0,1)$ random variables. Let $X_{(1)}, X_{(2)}$ and $X_{(3)}$ denote the corresponding order statistics. Identify the distribution of $X_{(1)}$ and compute $\mathbb{E} X_{(1)}$. Justify your answer.
$[4+1]$
Question 4. Let X be a continuous random variable with a continuous pdf f and distribution function F. Suppose that there exists $\alpha \in \mathbb{R}$ such that

$$
\mathbb{P}(X \geq \alpha+x)=\mathbb{P}(X \leq \alpha-x), \forall x \in \mathbb{R}
$$

(a) Identify the functions $F(\alpha+x)+F(\alpha-x), x \in \mathbb{R}$ and $f(\alpha+x)-f(\alpha-x), x \in \mathbb{R}$. Justify your answer. $\quad[0.5+0.5]$
(b) What can you say about the mean and median of X ? Justify your answer. $[2+2]$

Question 5. (a) Using Hölder's inequality or otherwise, prove the following inequality

$$
\begin{equation*}
\left(\mathbb{E}|X+Y|^{p}\right)^{\frac{1}{p}} \leq\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}+\left(\mathbb{E}|Y|^{p}\right)^{\frac{1}{p}}, \tag{3}
\end{equation*}
$$

for real valued continuous random variables X, Y and any real number $p>1$.
(b) Let X and Y be two random variables with Exponential(1) distribution, such that the Correlation coefficient between X and Y is $-\frac{1}{3}$. Is this information sufficient to compute the value of $\mathbb{E}\left[\mathbb{E}\left[X^{2} \mid Y\right]\right]$? If your answer is yes, then compute the value. If your answer is no, then supply the appropriate justification.

Question 6. Recall the following result discussed in class. Let F be the distribution function of a random vector taking values in \mathbb{R}^{2}. Then for real numbers $x_{1}^{\prime}<x_{1}, x_{2}^{\prime}<x_{2}$, we verified that

$$
\begin{equation*}
F\binom{x_{1}}{x_{2}}-F\binom{x_{1}^{\prime}}{x_{2}}-F\binom{x_{1}}{x_{2}^{\prime}}+F\binom{x_{1}^{\prime}}{x_{2}^{\prime}} \geq 0 . \tag{5}
\end{equation*}
$$

State and prove the corresponding version of this inequality in three dimensions.

