MID SEMESTER EXAMINATION (2019-20 ODD), BASIC PROBABILITY AND DISTRIBUTION THEORY (MTH431A) TOTAL MARKS: 32, MAXIMUM YOU CAN SCORE: 30

ROLL NO:
NAME:

Instructions:

(1) Illegible answers will be taken as incorrect.
(2) You may refer to your own class notes and use results proved in class. Searching in books/internet is not allowed. Mobiles must be switched off during the examination.
(3) At the end of the exam, return the question paper along with your answer-script.
(4) $\mathbb{N}=\{1,2, \cdots\}$ denotes the set of natural numbers. $(\Omega, \mathcal{F}, \mathbb{P})$ denotes some arbitrary but fixed probability space.

1. Section A

Question 1. This question consists of MCQs with exactly one correct answer in each. Put a tick (\checkmark) beside the correct option. Answer on top of this question paper. Make sure to return the question paper along with your answer-script at the end of the exam. You get no credit for rough work.
(I) Assume that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. Consider the function $\mu: \mathbb{B}_{\mathbb{R}} \rightarrow[0, \infty]$ defined by

$$
\mu(B):=\frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \delta_{n}(B), \forall B \in \mathbb{B}_{\mathbb{R}}
$$

Then
(a) μ is not a measure on $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$.
(b) μ is not a probability measure on $\left(\mathbb{R}, \mathbb{B}_{\mathbb{R}}\right)$.
(c) There exists a real valued random variable with law μ.
(d) none of the above statements are true.
(II) Let $A, B \in \mathcal{F}$ be such that $\mathbb{P}(A)=\mathbb{P}(B)=1$. Then $\mathbb{P}(A \cap B)$ equals
(a) 0 .
(b) $\frac{1}{3}$.
(c) $\frac{1}{2}$.
(d) 1 .
(III) Let $2^{\mathbb{N}}$ denote the power set of \mathbb{N}, i.e. the set of all subsets of \mathbb{N}. Let μ be the counting measure defined on $\left(\mathbb{N}, 2^{\mathbb{N}}\right)$. Consider the sets $A_{n}:=\{n, n+1, n+2, \cdots\}, \forall n \in \mathbb{N}$. Then the values of $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$ and $\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)$ are
(a) 0 and 0 respectively.
(b) ∞ and ∞ respectively.
(c) ∞ and 0 respectively.
(d) 0 and ∞ respectively.

Date: September 21, 2019. Time: 8:00-10:00 hrs. Venue: L1 ERES.
(IV) Let X and Y be two real valued random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Fix $A \in \mathcal{F}$. Consider the function $Z^{A}: \Omega \rightarrow \mathbb{R}$ defined by

$$
Z^{A}(\omega):= \begin{cases}X(\omega), \text { if } \omega \in A \tag{3}\\ Y(\omega), \text { otherwise }\end{cases}
$$

Then the statement ' Z^{A} is also a real valued random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ ' is
(a) true for all $A \in \mathcal{F}$.
(b) false for all $A \in \mathcal{F}$.
(c) may be true or false depending on $A \in \mathcal{F}$.
(V) Let X be a real valued random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose $\mathbb{E} X^{2}=4$. Then
(a) $\mathbb{E}|X|$ need not be finite.
(b) $\mathbb{E}|X|$ exists and must take values in $[0,2]$.
(c) $\mathbb{E} X$ exists and can take any value in \mathbb{R}.
(d) none of the above statements are true.

2. Section B

Instructions: Answer these questions in your answer-script. You can use any result proved in class.
 following collection of subsets of Ω

$$
\begin{equation*}
\sigma(X):=\left\{X^{-1}(B): B \in \mathbb{B}_{\mathbb{R}}\right\} \tag{4}
\end{equation*}
$$

(a) Show that $\sigma(X)$ is a σ-field of subsets of Ω. Provide all details.
(b) Explicitly write down $\sigma(X)$, when X is a constant. Justify your answer.

Question 3. While conducting a random experiment, a researcher found that the outcomes can be modelled by a real valued random variable X, such that jumps of its distribution function F occur exactly at the points a and $b(a<b)$. However, the continuous part of the distribution function could not be identified. Based on the experiments, the researcher also concluded that the events $(X=a)$ and $(X=b)$ are independent. Provide an example of such a random variable X or disprove the above conclusion.

Question 4. (a) Define a median of a real valued random variable.
(b) Consider all real valued random variables X with continuous probability density functions such that the mean, say μ, exists. Furthermore, assume that λ is a median of X. Is the inequality $\mathbb{E}|X-\lambda| \leq \mathbb{E}|X-\mu|$ true for all such X ? Prove the statement or produce a counter-example. Justify your answer.

Question 5. Fix $c>0$. Consider a two-dimensional random vector $\binom{X}{Y}$ with joint probability density function $f: \mathbb{R}^{2} \rightarrow[0, \infty)$ given by

$$
\begin{equation*}
f\left(\binom{x}{y}\right):=\frac{c}{2 \pi} \frac{1}{\left(c^{2}+x^{2}+y^{2}\right)^{1.5}}, \forall\binom{x}{y} \in \mathbb{R}^{2} \tag{3}
\end{equation*}
$$

(a) Compute the marginal probability density functions (PDFs), if they exist.
(b) If the marginal PDFs exist, then verify that they are one-dimensional PDFs. If they do not exist, find the marginal distribution functions.

