QUIZ 2, MTH431A, TOTAL MARKS: 10

ROLL NO: NAME:

Instructions:

- (1) You get no credit for rough work (on Multiple Choice and Multiple Select Questions). No extra pages will be supplied.
- (2) You may refer to your own class notes. Searching in books/internet is not allowed. Mobiles must be switched off during the quiz.

Question 1. Let X be a real valued random variable with distribution N(1,1). Compute $\mathbb{E}X^4$. [3]

Date: October 4, 2019. Time: 15:00 - 15:50 hrs.

<u>Question</u> 2. Let X and Y be two real valued random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that they are independent. Identify <u>all the correct options</u> below (put a tick \checkmark). No partial credits will be awarded. [2]

- (a) The collection $\{X^2 + X, Y^3\}$ is necessarily independent.
- (b) The collection $\{X^2 + X, -X, Y^3\}$ is necessarily independent.
- (c) $\mathbb{P} \circ {\binom{X}{Y}}^{-1}(B_1 \times B_2) = \mathbb{P} \circ X^{-1}(B_1) \times \mathbb{P} \circ Y^{-1}(B_2)$ for all $B_1, B_2 \in \mathbb{B}_{\mathbb{R}}$.
- (d) It is possible to have $\mathbb{P} \circ X^{-1} = \mathbb{P} \circ Y^{-1}$.

<u>Question</u> 3. Give an example of a real valued continuous random variable (or equivalently a probability distribution on \mathbb{R} with density) such that its quantile of order $\frac{1}{3}$ is not unique. Justify your answer. [2]

ROLL NO:

NAME:

<u>Question</u> 4. Let X and Y be two independent random variables with p.d.f. $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}, \forall x \in \mathbb{R}.$

- (a) Find the distribution of $\frac{X-Y}{2}$ (i.e. compute the law/distribution function/pdf/pmf whichever is applicable and convenient for you). [2]
- (b) Is the distribution of $\frac{X+Y}{2}$ the same as that of $\frac{X-Y}{2}$? Put a tick (\checkmark) 'Yes/ No' [1]