QUIZ 3, MTH431A
 TOTAL MARKS: 10

ROLL NO:
 NAME:

Instructions:
(1) Illegible answers will be taken as incorrect.
(2) You get no credit for rough work. No extra pages will be supplied.
(3) You may refer to your own class notes. Searching in books/internet is not allowed. Mobiles must be switched off during the quiz.

Multiple Choice Questions [Only one option is correct. Put a tick (\checkmark) beside the correct option.]

Question 1. Let $X \sim$ Exponential(1). Then the value of $\mathbb{E} X^{4}$ is
(1) 6
(2) 15
(3) 24
(4) 120 .
 the value of $\mathbb{P}\left(\liminf _{n} A_{n}\right)$
(1) is 0 .
(2) is $\frac{1}{2}$.
(3) is 1 .
(4) can not be determined from the given information.
 $X_{(3)}$ denote the corresponding order statistics. Then the value of $\mathbb{E} X_{(3)}$
(1) is $\frac{1}{2}$.
(2) is $\frac{3}{4}$.
(3) is $\frac{7}{8}$.
(4) can not be determined from the given information.
 f. Then the statement 'there exists a Borel measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(X) \sim$ $\operatorname{Uniform}(0,1)$ ' is
(1) true. (2) false.

Date: November 8, 2019. Time: 15:00-15:50 hrs.

Multiple Select Questions [Number of correct option(s) can be 1, 2, 3 or 4. Put a tick (\checkmark) beside only the correct option(s) to get credit. No partial credits will be awarded.]

Question 5. Suppose that the random variables X_{1}, X_{2}, X_{3} and X_{4} are defined on the same probability space and are exchangeable. In addition, assume that $\mathbb{E}\left(X_{4}-4\right)^{4}<\infty$.
(1) X_{1}, X_{2} and X_{3} are exchangeable.
(2) $X_{1}, X_{2}, X_{3}, X_{4}$ are mutually indepedent.
(3) The moments $\mathbb{E}\left(X_{1}-1\right), \mathbb{E}\left(X_{2}-2\right)^{2}$ and $\mathbb{E}\left(X_{3}-3\right)^{3}$ exist.
(4) $\operatorname{Cov}\left(X_{1}, X_{2}\right)$ exists and $\operatorname{Cov}\left(X_{1}, X_{2}\right) \geq-\frac{1}{3} \operatorname{Var}\left(X_{3}\right)$.

Question 6. Let $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)^{t}$ be Gaussian random vector with mean vector $\mu=$ $\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)^{t}$ and Variance-Covariance matrix $\Sigma=\left(\sigma_{i j}\right)_{n \times n}$.
(1) Marginal distributions are also Gaussian and $X_{i} \sim N\left(\mu_{i}, \sigma_{i i}\right)$ for all $i=1,2, \cdots, n$.
(2) Given scalars $a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{R}$, the random variable $\sum_{i=1}^{n} a_{i} X_{i}$ is also Gaussian.
(3) The component random variables $X_{1}, X_{2}, \cdots, X_{n}$ are mutually indepedent if and only if $\sigma_{i j}=0, \forall i \neq j$.
(4) none of the above.

Question 7. Let X and Y be two real valued random variables defined on the same probability space. Assume that they have finite second moments.
(1) $X+Y$ need not have finite second moment. Only with information from the joint distribution of $\binom{X}{Y}$, we can conclude about the finiteness of this moment.
(2) $\mathbb{E}|X Y|$ need not be finite. Only with information from the joint distribution of $\binom{X}{Y}$, we can conclude about the finiteness of this moment.
(3) $\inf _{c \in \mathbb{R}} \mathbb{E}(Y-c)^{2}$ exists and equals $\operatorname{Var}(Y)$.
(4) $\inf _{a, b \in \mathbb{R}} \mathbb{E}(Y-a X-b)^{2}$ exists and equals $\operatorname{Var}(Y)\left(1-\rho^{2}\right)$, where ρ is the correlation coefficient between X and Y.

