QUIZ 3, MTH431A TOTAL MARKS: 10

ROLL NO: NAME:

Instructions:

- (1) Illegible answers will be taken as incorrect.
- (2) You get no credit for rough work. No extra pages will be supplied.
- (3) You may refer to your own class notes. Searching in books/internet is not allowed. Mobiles must be switched off during the quiz.

Multiple Choice Questions [Only one option is correct. Put a tick (\checkmark) beside the correct option.]

Question 1. Let $X \sim Exponential(1)$. Then the value of $\mathbb{E}X^4$ is [1]

(1) 6 (2) 15 (3) 24 (4) 120.

<u>Question</u> 2. Let $\{A_n\}$ be a sequence of events in a probability space with $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$. Then the value of $\mathbb{P}(\liminf_n A_n)$ [1]

- (1) is 0.
- (2) is $\frac{1}{2}$.
- (3) is 1.
- (4) can not be determined from the given information.

<u>Question</u> 3. Let X_1, X_2 and X_3 be independent Bernoulli $(\frac{1}{2})$ random variables. Let $X_{(1)}, X_{(2)}$ and $\overline{X_{(3)}}$ denote the corresponding order statistics. Then the value of $\mathbb{E}X_{(3)}$ [1]

- (1) is $\frac{1}{2}$.
- (2) is $\frac{3}{4}$.
- (3) is $\frac{7}{8}$.
- (4) can not be determined from the given information.

<u>Question</u> 4. Let X be a real valued random variable such that it has a continuous density function f. Then the statement 'there exists a Borel measurable function $g : \mathbb{R} \to \mathbb{R}$ such that $g(X) \sim Uniform(0,1)$ ' is [1]

$$(1)$$
 true. (2) false.

Date: November 8, 2019. Time: 15:00 - 15:50 hrs.

Multiple Select Questions [Number of correct option(s) can be 1, 2, 3 or 4. Put a tick (\checkmark) beside only the correct option(s) to get credit. No partial credits will be awarded.]

<u>Question</u> 5. Suppose that the random variables X_1, X_2, X_3 and X_4 are defined on the same probability space and are exchangeable. In addition, assume that $\mathbb{E}(X_4 - 4)^4 < \infty$. [2]

- (1) X_1, X_2 and X_3 are exchangeable.
- (2) X_1, X_2, X_3, X_4 are mutually indepedent.
- (3) The moments $\mathbb{E}(X_1-1), \mathbb{E}(X_2-2)^2$ and $\mathbb{E}(X_3-3)^3$ exist.
- (4) $Cov(X_1, X_2)$ exists and $Cov(X_1, X_2) \ge -\frac{1}{3}Var(X_3)$.

<u>Question</u> 6. Let $X = (X_1, X_2, \dots, X_n)^t$ be Gaussian random vector with mean vector $\mu = (\mu_1, \mu_2, \dots, \mu_n)^t$ and Variance-Covariance matrix $\Sigma = (\sigma_{ij})_{n \times n}$. [2]

- (1) Marginal distributions are also Gaussian and $X_i \sim N(\mu_i, \sigma_{ii})$ for all $i = 1, 2, \cdots, n$.
- (2) Given scalars $a_1, a_2, \dots, a_n \in \mathbb{R}$, the random variable $\sum_{i=1}^n a_i X_i$ is also Gaussian.
- (3) The component random variables X_1, X_2, \dots, X_n are mutually indepedent if and only if $\sigma_{ij} = 0, \forall i \neq j$.
- (4) none of the above.

<u>Question</u> 7. Let X and Y be two real valued random variables defined on the same probability space. Assume that they have finite second moments. [2]

- (1) X + Y need not have finite second moment. Only with information from the joint distribution of $\binom{X}{Y}$, we can conclude about the finiteness of this moment.
- (2) $\mathbb{E}|XY|$ need not be finite. Only with information from the joint distribution of $\binom{X}{Y}$, we can conclude about the finiteness of this moment.
- (3) $\inf_{c \in \mathbb{R}} \mathbb{E}(Y c)^2$ exists and equals Var(Y).
- (4) $\inf_{a,b\in\mathbb{R}} \mathbb{E}(Y-aX-b)^2$ exists and equals $Var(Y)(1-\rho^2)$, where ρ is the correlation coefficient between X and Y.