ASSIGNMENT 2, MTH614A DUE ON 14:00 HRS, MARCH 28, 2019.

Instructions:

- Supply all details.
- You are encouraged to discuss with your classmates. However, write down the solutions on your own.
- In what follows, $(\Omega, \mathcal{F}, \mathbb{P})$ will denote a probability space.
- Marks are indicated at the end of each problem. Total marks for this assignment is 5.

Problems:

- Q1. Let $\{f_n\}$ be a sequence of real valued continuous functions on \mathbb{R} converging uniformly to a function $f : \mathbb{R} \to \mathbb{R}$. Show that f is continuous. $\left[\frac{1}{2}\right]$
- $\left[\frac{1}{2} + \frac{1}{2}\right]$ Q2. From the definition of Itô integrals, verify the following two relations:

(a)
$$\int_{0}^{T} B_{s} dB_{s} \stackrel{a.s.}{=} \frac{1}{2} B_{T}^{2} - \frac{1}{2} T$$

b)
$$\int_{0}^{T} s \, dB_s \stackrel{a.s.}{=} TB_T - \int_{0}^{T} B_s \, ds$$

(b) $\int_0^T s \, dB_s \stackrel{a.s.}{=} TB_T - \int_0^T B_s \, ds.$ Q3. Using the Itô formula, verify the following two relations:

 $\left[\frac{1}{2}\right]$

 $\left[\frac{1}{2}\right]$

(a)
$$\int_0^1 B_s dB_s \stackrel{a.s.}{=} \frac{1}{2} B_T^2 - \frac{1}{2} T$$

- (b) $\int_0^T s \, dB_s \stackrel{a.s.}{=} TB_T \int_0^T B_s \, ds.$ Q4. For any filtration (\mathcal{F}_t) , define

$$\mathcal{F}_{t+} := \bigcap_{s>t} \mathcal{F}_s, \forall t \ge 0$$

Show that the filtration (\mathcal{F}_{t+}) is right continuous.

Q5. For any sub σ -field \mathcal{G} of \mathcal{F} , let $\overline{\mathcal{G}}$ denote the \mathbb{P} -completion of \mathcal{G} . Given any filtration (\mathcal{F}_t) , show that [1]

$$(\bar{\mathcal{F}}_{t+}) = (\overline{\mathcal{F}_{t+}}).$$

Q6. Given any $V \in \mathcal{L}(B)$, define a process $\{X_t\}$ by $X_t := \int_0^t V_s \, dB_s - \frac{1}{2} \int_0^t V_s^2 \, ds$. Show that a.s. for all $t \ge 0$ $\left[\frac{1}{2}\right]$

$$\exp(X_t) = 1 + \int_0^t \exp(X_s) V_s \, dB_s.$$

Note: Processes of this type are called Exponential martingales.

Q7. In class, we have proved the Itô formula for any Itô process $\{X_t\}$ and any C_b^2 function $f : \mathbb{R} \to \mathbb{R}$. Using the same approach (Taylor's expansion), prove the Itô formula when $f : [0, \infty) \times \mathbb{R} \to \mathbb{R}$ is any $C_b^{1,2}$ function. [1]