END SEMESTER EXAMINATION INTRODUCTION TO STOCHASTIC CALCULUS MTH614A VENUE: L13 ERES DATE AND TIME: APRIL 26, 9:00 TO 12:00 HRS

General instructions:

- Each section below has specific instructions. Read them carefully.
- You can use your class notes. Searching in books/internet is not allowed.
- Maximum you can score: 40 (Answer as much as you can)
- Notation: In what follows, {B_t} will denote a 1 dimensional standard Brownian motion on some probability space (Ω, F, P).

1. Section A

<u>Question</u> 1. Write down the correct choice in the following questions. Each question has only one correct answer. You do not get any credit for the rough work.

- (i) The limit $\limsup_{n \to \infty} n^{-\frac{1}{3}} B_n$ [2]
 - is a.s. 0. is a.s. ∞ . is a.s. $\frac{1}{3}$. does not exist.
- (ii) Let $f: [0, 10] \to \mathbb{R}$ be a continuous function with finite variation. Then square variation of f on [0, 10] [3]
 - does not exist. is 0. is ∞ .
 - is the same as the total variation (as in finite variation).
- (iii) Identify which one of the following processes is not a local martingale with respect to the natural filtration of $\{B_t\}$. [3]

•
$$\{B_{t\wedge 3}\}$$
. • $\{\int_0^t \exp(B_s) dB_s\}$. • $\{\exp(2(B_t - t))\}$. • $\{B_t^2\}$

(iv) which of the following is \underline{NOT} a standard Brownian motion? [3]

• $\{X_t\}$ where

• {.

$$X_t := \begin{cases} 0, \text{ if } t = 0, \\ tB_{\frac{1}{t}}, \text{ if } t > 0. \end{cases}$$
$$\bullet \{\frac{1}{3}B_{3t}\}_{t \ge 0}. \quad \bullet \{\frac{1}{3}B_{9t}\}_{t \ge 1}$$

- (v) Let \mathcal{C} be a sub σ -field of \mathcal{F} and let $X, Y \in \mathcal{L}^1(\mathbb{P})$. Which one of the following is <u>NOT</u> a property of the Conditional Expectation? [3]
 - $\mathbb{E}[3X + Y \mid \mathcal{C}] \stackrel{a.s.}{=} 3\mathbb{E}[X \mid \mathcal{C}] + \mathbb{E}[Y \mid \mathcal{C}].$ $\mathbb{E}[\mathbb{E}[Y \mid \mathcal{C}]] = \mathbb{E}Y.$
 - If $\sigma(X)$ and \mathcal{C} are independent, then $\mathbb{E}[X \mid \mathcal{C}] \stackrel{a.s.}{=} \mathbb{E}X$.
 - If X is measurable with respect to \mathcal{C} , then $\mathbb{E}[X \mid \mathcal{C}] \stackrel{a.s.}{=} \mathbb{E}X$.
- (vi) Let $\{X_t\}$ be the unique strong solution to the equation

$$dX_t = dB_t - 2(X_t + B_t) dt; X_0 = 1.$$

Suppose Q is an equivalent probability measure such that $\{B_t^*\}$ is a Brownian motion under Q and

$$dX_t = dB_t^* - 2X_t \, dt; X_0 = 1.$$

Apply Girsanov Theorem to identify which one of the following could be the density $\frac{dQ}{d\mathbb{P}}$ on the given filtration (\mathcal{F}_t) ? [3]

• $\exp(2\int_0^t B_s \, dB_s - 2\int_0^t B_s^2 \, ds)$ • $\exp(2\int_0^t B_s \, dB_s - t^2 \, ds)$ • $\exp(2\int_0^t B_s \, dB_s - t^2 \, ds)$ • $\exp(2\int_0^t B_s \, dB_s - 2\int_0^t B_s^2 \, ds)$

(vii) Let $\{X_t\}$ be a strong solution of the SDE $dX_t = \sigma(X_t)dB_t + b(X_t)dt; X_0 = 1$, where $\sigma, b: \mathbb{R} \to \mathbb{R}$ are continuous functions. Which one of the following is <u>NOT</u> true? [3]

- If σ and b are globally Lipschitz, then strong solutions are pathwise unique.
- If σ and b are locally Lipschitz, then strong solutions are pathwise unique.
- If σ and b are globally Lipschitz, then X_1 has moments of all orders.
- $\{X_t\}$ is adapted to the filtration of $\{B_t\}$.

2. Section B

Instruction: You may use any result proved in class.

<u>Question</u> 2. Is $\sup_{s \in [0,2]} B_s$ absolutely continuous? Justify your answer – compute the density function or otherwise, disprove the fact. [4]

Question 3. Fix T > 0. From the definition of Itô integrals, verify the following relation: [6]

$$\int_0^T s \, dB_s \stackrel{a.s.}{=} TB_T - \int_0^T B_s \, ds$$

Question 4. Fix T > 0. Consider the following sequence of Stochastic processes defined on $(\Omega, \mathcal{F}, \mathbb{P})$:

$$X_t^{(1)} = 3, \forall t \in [0, T]$$

and for $n = 1, 2, \cdots$

$$X_t^{(n+1)} = 3 + \int_0^t (X_s^{(n)} - 1) \, ds + 2 \int_0^t \sin(X_s^{(n)}) \, dB_s, \forall t \in [0, T].$$

Check whether the sequence converges in $\mathcal{L}^2([0,T] \times \Omega, Leb \otimes \mathbb{P})$. Here *Leb* denotes the Lebesgue measure restricted to the interval [0,T]. [6]

Question 5. Solve the following SDE and find the unique strong solution $\{X_t\}$:

$$dX_t = 2\,dB_t - 3X_t\,dt; X_0 = 1$$

[3 + 1 + 1]

Also find $\mathbb{E}X_t$ and $Var(X_t)$.

Question 6. Consider the evolution of stock price $\{S_t\}$ given by $S_t = S_0 \exp(Y_t), t \ge 0$ where

$$dY_t = \mu \, dt + \sigma \, dB_t; Y_0 = 0$$

and μ, σ are the drift coefficient and volatility of the market respectively. Let r denote the risk-free interest rate and $F(S_t, t)$ denote the price of a call option at time t. Deduce the Black-Scholes PDE. [10]

2