QUIZ 2, MTH614A TOTAL MARKS: 5

ROLL NO:

NAME:

Instructions:

- You get no credit for rough work. No extra pages will be supplied. You may use your class notes.
- (2) In what follows, {B_t} will denote a 1 dimensional standard Brownian motion on some probability space (Ω, F, P).

Problems:

Q1. Tick (\checkmark) ALL correct answers among the options given. [1]

- (a) $\{\int_0^t B_s ds\}$ is a process with continuous paths.
- (b) $\{\int_0^t B_s ds\}$ is a process with FV paths.
- (c) $\{\int_0^t B_s ds\}$ is a process with differentiable paths.
- (d) $\int_0^1 B_s ds$ is a Gaussian random variable.
- Q2. Tick (\checkmark) ALL correct answers among the options given. Let $V \in \mathcal{L}(B, [0, T])$ and let $\{V^n\}$ be a sequence of bounded, elementary processes converging to V in $\mathcal{L}^2(Leb \otimes \mathbb{P})$. Then $\lim_{n \to \infty} \int_0^T V_t^n dB_t = \int_0^T V_t dB_t$ is true in the sense of [1]
 - (a) convergence in $\mathcal{L}^2(\mathbb{P})$.
 - (b) convergence in $\mathcal{L}^p(\mathbb{P})$ for all $p \in [1, 2]$.
 - (c) convergence in probability.
 - (d) almost sure convergence.

Q3. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^2 function. Then the covariance between $\int_0^1 f(B_s) dB_s$ and $\int_0^2 f(B_s) dB_s$ is _____. [1]

Q4. Write down the mean and variance of the random variable $\int_0^T s \, dB_s$ _____

 $\left[\frac{1}{2} + \frac{1}{2}\right]$

Q5. Using Itô formula, find the SDE satisfied by $\{\exp(B_t - \frac{1}{2}t)\}$ [1]