QUIZ 2, MTH614A
 TOTAL MARKS: 5

ROLL NO:
NAME:

Instructions:
(1) You get no credit for rough work. No extra pages will be supplied. You may use your class notes.
(2) In what follows, $\left\{B_{t}\right\}$ will denote a 1 dimensional standard Brownian motion on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Problems:
Q1. Tick (\checkmark) ALL correct answers among the options given.
(a) $\left\{\int_{0}^{t} B_{s} d s\right\}$ is a process with continuous paths.
(b) $\left\{\int_{0}^{t} B_{s} d s\right\}$ is a process with FV paths.
(c) $\left\{\int_{0}^{t} B_{s} d s\right\}$ is a process with differentiable paths.
(d) $\int_{0}^{1} B_{s} d s$ is a Gaussian random variable.

Q2. Tick (\checkmark) ALL correct answers among the options given. Let $V \in \mathcal{L}(B,[0, T])$ and let $\left\{V^{n}\right\}$ be a sequence of bounded, elementary processes converging to V in $\mathcal{L}^{2}(L e b \otimes \mathbb{P})$. Then $\lim _{n \rightarrow \infty} \int_{0}^{T} V_{t}^{n} d B_{t}=\int_{0}^{T} V_{t} d B_{t}$ is true in the sense of
(a) convergence in $\mathcal{L}^{2}(\mathbb{P})$.
(b) convergence in $\mathcal{L}^{p}(\mathbb{P})$ for all $p \in[1,2]$.
(c) convergence in probability.
(d) almost sure convergence.

Q3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2} function. Then the covariance between $\int_{0}^{1} f\left(B_{s}\right) d B_{s}$ and $\int_{0}^{2} f\left(B_{s}\right) d B_{s}$ is \qquad .
Q4. Write down the mean and variance of the random variable $\int_{0}^{T} s d B_{s}$ \qquad -,
\qquad -.
Q5. Using Itô formula, find the SDE satisfied by $\left\{\exp \left(B_{t}-\frac{1}{2} t\right)\right\}$
\qquad .

