QUIZ 3, MTH614A
 TOTAL MARKS: 5

ROLL NO:
NAME:

Instructions:
(1) You get no credit for rough work. No extra pages will be supplied. You may use your class notes.
(2) In what follows, $\left\{B_{t}\right\}$ will denote a 1 dimensional standard Brownian motion on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Problems:

Q1. Tick (\checkmark) ALL correct answers among the options given. Let $\left\{X_{t}^{x}\right\}$ denote the unique strong solution to the equation

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t ; X_{0}=x
$$

where $\sigma, b: \mathbb{R} \rightarrow \mathbb{R}$ are Lipschitz continuous functions and $x \in \mathbb{R}$. Then $\lim _{n \rightarrow \infty} X_{1}^{\frac{1}{n}}=X_{1}^{0}$ holds
(a) in probability.
(b) a.s.
(c) in $\mathcal{L}^{2}(\mathbb{P})$.

Q2. Write down the Quadratic Variation (co-variation) process of $\left\{\int_{0}^{t} B_{s} d B_{s}\right\}$
\qquad -.

Q3. Write down the unique strong solution to the equation $d X_{t}=d B_{t}-X_{t} d t ; X_{0}=1$. Also find $\mathbb{E} X_{t}$ and $\operatorname{Var}\left(X_{t}\right)$.
\qquad , \qquad ,

$$
[1.5+0.5+0.5]
$$

Q4. Let $\left\{X_{t}\right\}$ be the unique strong solution to the equation

$$
d X_{t}=d B_{t}-2\left(X_{t}+1\right) d t ; X_{0}=1
$$

Find an equivalent probability measure Q such that

$$
d X_{t}=d B_{t}^{*}-2 X_{t} d t ; X_{0}=1
$$

where $\left\{B_{t}^{*}\right\}$ is a Brownian motion under Q. For $A \in \mathcal{F}_{t}, Q(A)=$ \qquad

