ASSIGNMENT 1, MTH754A DUE ON 9:00 HRS, AUGUST 16, 2018.

Instructions:

- Supply all details.
- You are encouraged to discuss with your classmates. However, write down the solutions on your own.
- In what follows, Ω will always denote some non-empty set.
- Marks are indicated at the end of each problem. Total marks for this assignment is [5].

Problems:

- Q1. Suppose that a collection \mathcal{F} of subsets of Ω has the following properties.
 - (a) $\emptyset \in \mathcal{F}$.
 - (b) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

(c) If $A \in \mathcal{F}$, then A^c is a finite disjoint union of members of \mathcal{F} .

Consider another collection C consisting of finite disjoint union of members of \mathcal{F} . Show that C is a field of subsets of Ω . $\left[\frac{1}{2}\right]$

Remarks: (not included in the exercise) The collection of left-open right-closed intervals in \mathbb{R} is an example of such an \mathcal{F} . Recall that we consider intervals of the form $(a, \infty), a \in \mathbb{R}$ to be left-open right-closed. The collection \mathcal{C} was mentioned in the class as an example of a field, but not a σ -field.

Q2. Show that open sets in \mathbb{R} can be written as a disjoint union of finitely (or countably) many open intervals. [1]

Remarks: (not included in the exercise) This fact was used in the class to show the equality of the Borel σ -field $\mathbb{B}_{\mathbb{R}}$ generated by the open sets in \mathbb{R} and the σ -field generated by the open intervals.

- Q3. Let $f: \Omega \to \Omega'$ be a function and let \mathcal{F} be a σ -field in Ω' . Show that $f^{-1}(\mathcal{F}) = \{f^{-1}(A) : A \in \mathcal{F}\}$ is a σ -field in Ω . $\left\lceil \frac{1}{2} \right\rceil$
- Q4. Let $f: \Omega \to \Omega'$ be a function and let \mathcal{F} be a collection of subsets of Ω' . Show that

$$\sigma(f^{-1}(\mathcal{F})) = f^{-1}(\sigma(\mathcal{F})),$$

where $f^{-1}(A)$ denotes the pre-image of $A \subset \Omega'$, $f^{-1}(\mathcal{F}) = \{f^{-1}(A) : A \in \mathcal{F}\}$ and $f^{-1}(\sigma(\mathcal{F})) = \{f^{-1}(A) : A \in \sigma(\mathcal{F})\}$. $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (Hint: Use Q3 and the good sets principle.)

- Q5. Say that a σ -field is *countably generated (or separable)* if it can be generated by some countable collection of sets. Show that the Borel σ -field $\mathcal{B}_{\mathbb{R}}$ on \mathbb{R} is countably generated. $\left\lceil \frac{1}{2} \right\rceil$
- Q6. Suppose that \mathcal{F} is a collection of subsets of Ω with the following properties: $\Omega \in \mathcal{F}$ and $A, B \in \mathcal{F}$ implies $A \setminus B := A \cap B^c \in \mathcal{F}$. Show that \mathcal{F} is a field. $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- Q7. Suppose that a collection \mathcal{F} of subsets of Ω is both a π system and a λ system. Show that \mathcal{F} is a σ -field. $\left\lceil \frac{1}{2} \right\rceil$
- Q8. (Uniqueness of extension) Let \mathcal{F} be a π -system on Ω . Suppose that \mathbb{P}_1 and \mathbb{P}_2 are two probability measures defined on the measurable space $(\Omega, \sigma(\mathcal{F}))$ such that they agree on \mathcal{F} , i.e.

$$\mathbb{P}_1(A) = \mathbb{P}_2(A), \forall A \in \mathcal{F}.$$

Show that the measures agree on $\sigma(\mathcal{F})$. [1]