ASSIGNMENT 3, MTH754A DUE ON 9:00 HRS, SEPTEMBER 10, 2018.

Instructions:

- Supply all details.
- You are encouraged to discuss with your classmates. However, write down the solutions on your own.
- In what follows, $(\Omega, \mathcal{F}, \mu)$ will denote a measure space.
- Marks are indicated at the end of each problem. Total marks for this assignment is [5].

Problems:

Q1. Let $f: \Omega \to \mathbb{R}$ be a non-negative, Borel measurable function. Fix $A \in \mathcal{F}$. Show that

$$\int_{A} f \, d\mu = \sup\left\{\int_{A} s \, d\mu : 0 \le s \le f, s \text{ simple}\right\} \cdot \begin{bmatrix} \frac{1}{2} \end{bmatrix}$$

Q2. Let $f: \Omega \to \mathbb{R}$ be a non-negative, Borel measurable, integrable function. Consider the set function $\nu: \mathcal{F} \to [0, \infty]$ defined by

$$\nu(A) := \int_{A} f(\omega) \, \mu(d\omega) = \int_{\Omega} f(\omega) \mathbf{1}_{A}(\omega) \, \mu(d\omega), \, \forall A \in \mathcal{F}.$$

- Show that $(\Omega, \mathcal{F}, \nu)$ is a finite measure space. [1]
- Q3. Let f, g be Borel measurable, integrable functions such that

$$\int_{A} f \, d\mu \leq \int_{A} g \, d\mu, \ \forall A \in \mathcal{F}.$$

Show that $f \leq g, \mu$ -a.e.. $\left[\frac{1}{2}\right]$

- Q4. Let $f : \mathbb{R} \to \mathbb{R}$ be Borel measurable and fix $a \in \mathbb{R}$. Consider the two integrals $\int_{\mathbb{R}} f(x) dx'$ and $\int_{\mathbb{R}} f(x-a) dx'$ with respect to the Lebesgue measure. If one integral exists, show the existence of the other. In this case, show that the two integrals are actually equal. $\left[\frac{1}{2} + \frac{1}{2}\right]$
- Q5. Prove the following version of Markov inequality. Let $f : \Omega \to \mathbb{R}$ be Borel measurable. Then for any $A \in \mathcal{F}$ and c > 0 show that

$$\mu(\{|f| \ge c\} \cap A) \le \frac{1}{c} \int_{A} |f| \, d\mu. \begin{bmatrix} \frac{1}{2} \end{bmatrix}$$

- Q6. Construct a probability space $(\Omega, \mathcal{F}, \mu)$ and a real valued integrable function f on this space such that f is not bounded. $\begin{bmatrix} 1\\2 \end{bmatrix}$
- Q7. Fix $a, b \in \mathbb{R}$ with a < b. Suppose that there exist functions $f : (a, b) \times \Omega \to \mathbb{R}$ and $g : \Omega \to \mathbb{R}$ such that
 - (a) $\omega \in \Omega \mapsto f(t, \omega)$ is μ -integrable for every fixed $t \in (a, b)$,
 - (b) $t \in (a, b) \mapsto f(t, \omega)$ is continuous for every fixed $\omega \in \Omega$,
 - (c) $g \ge 0$ and μ -integrable,
 - (d) $|f(t,\omega)| \le g(\omega), \forall t, \omega.$

Then show that the function $h: (a, b) \to \mathbb{R}$ defined by

$$h(t) := \int_{\Omega} f(t, \omega) \, d\mu(\omega)$$

is continuous. $\frac{1}{2}$

Q8. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(t) := \frac{1}{\pi} \frac{1}{1+t^2}$. Show that

$$\int_{\mathbb{R}} t^+ f(t) dt = \int_{\mathbb{R}} t^- f(t) dt = \int_{\mathbb{R}} |t| f(t) dt = \infty. \begin{bmatrix} \frac{1}{2} \end{bmatrix}$$

Remark: Soon we shall encounter the concept of density of a random variable. The above result will then be restated as follows: the mean of a random variable with density f (a Cauchy random variable) does not exist.