ASSIGNMENT 6, MTH754A DUE ON 9:00 HRS, NOVEMBER 15, 2018.

Instructions:

- Supply all details.
- You are encouraged to discuss with your classmates. However, write down the solutions on your own.
- In what follows, $(\Omega, \mathcal{F}, \mathbb{P})$ will denote a probability space.
- Marks are indicated at the end of each problem. Total marks for this assignment is [5].

Problems:

Q1. Let $\left\{X_{n}\right\}$ be a sequence of real valued random variables on a probability space (Ω, \mathcal{F}), such that the sequence converges in probability to a random variable X. Show that there exists a subsequence $\left\{X_{n_{k}}\right\}$ converging a.s. to X. [$\left.\frac{1}{2}\right]$.
Q2. Let $\left\{F_{n}\right\}$ be a sequence of distribution functions (of probability measures) on \mathbb{R}. Show that there exists a subsequence $\left\{F_{n_{k}}\right\}$ and a non-decreasing, right continuous function F such that $\lim _{k} F_{n_{k}}(x)=F(x)$ at all continuity points of F. Prove or disprove: F is a distribution function of a probability measure on \mathbb{R}. [$\left.\frac{1}{2}\right]$
Remark: This result is usually referred to as Helly's selection theorem.
Q3. Let ν and μ be measures on (Ω, \mathcal{F}) with $\nu \ll \mu$. Show that $\int g d \nu=\int g f d \mu$ for all real valued measurable functions g, where $f=\frac{d \nu}{d \mu}$. $\left[\frac{1}{2}\right]$.
Q4. Let $X \in \mathcal{L}^{2}(\mathbb{P})$ and let \mathcal{G} be a sub- σ-field of \mathcal{F}. Then for any \mathcal{G} measurable random variable Y, show that

$$
\mathbb{E}(X-Y)^{2} \geq \mathbb{E}(X-\mathbb{E}[X \mid \mathcal{G}])^{2} \cdot\left[\frac{1}{2}\right]
$$

Q5. Fix $p \in[0,1]$. Consider a sequence of independent random variables $\left\{X_{n}\right\}$ such that

$$
X_{n}=\left\{\begin{array}{l}
\frac{1}{n}, \text { w.p. } p \\
-\frac{1}{n}, \text { w.p. } 1-p
\end{array}\right.
$$

Find all values of p such that the series $\sum_{n} X_{n}$ converges a.s.. [1]
Q6. Let X and Y be independent random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Further assume that $X, Y \in \mathcal{L}^{2}(\mathbb{P})$. Show that $X, Y, X^{2}, Y^{2}, X Y \in \mathcal{L}^{1}(\mathbb{P})$ and that

$$
\mathbb{E}(X Y)=(\mathbb{E} X)(\mathbb{E} Y), \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \cdot[1]
$$

Q7. In each of the following cases, find the pointwise (i.e. almost sure) limit of $\frac{S_{n}}{n}$ as $n \uparrow \infty$, where $S_{n}:=\left|X_{1}\right|+\cdots+\left|X_{n}\right|$ and $\left\{X_{n}\right\}$ is an iid sequence of random variables with
(a) law $\frac{1}{2} N(0,1)+\frac{1}{2} \delta_{0}$. $\left[\frac{1}{2}\right]$
(b) law given by the density function $\frac{1}{\pi\left(1+x^{2}\right)}, x \in \mathbb{R}$ (Cauchy distribution). [$\left.1 \frac{1}{2}\right]$

